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1 Grade Distribution Analysis

1.1 Auto-Verification Results

Model Correct Incorrect Unknown Success Rate
meta-llama/Meta-Llama-3.1-70B-Instruct 0 5 0 0.0%
Qwen/Qwen2.5-72B-Instruct 0 5 0 0.0%
meta-llama/Meta-Llama-3.1-8B-Instruct 0 5 0 0.0%
Qwen/Qwen2.5-7B-Instruct 0 5 0 0.0%
Qwen/QwQ-32B-Preview 0 5 0 0.0%
chatgpt-4o-latest 0 5 0 0.0%
o3-mini 4 1 0 80.0%
o1 5 0 0 100.0%
deepseek-ai/DeepSeek-V3 0 5 0 0.0%
deepseek-ai/DeepSeek-R1 3 2 0 60.0%

Note: Success Rate = Correct / (Correct + Incorrect) 100%

1.2 Overall Grade Distribution
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1.3 Grade Distribution by Solution Model

Model A B C D Total

meta-llama/Meta-Llama-3.1-70B-Instruct 0 0 4 1 5
Qwen/Qwen2.5-72B-Instruct 1 0 4 0 5
meta-llama/Meta-Llama-3.1-8B-Instruct 0 0 0 5 5
Qwen/Qwen2.5-7B-Instruct 0 0 3 2 5
Qwen/QwQ-32B-Preview 1 1 3 0 5
chatgpt-4o-latest 0 0 5 0 5
o3-mini 4 0 1 0 5
o1 5 0 0 0 5
deepseek-ai/DeepSeek-V3 0 0 5 0 5
deepseek-ai/DeepSeek-R1 3 0 2 0 5

1.4 Grade-Verification Correlation Analysis

Grade Correct Incorrect Unknown Total

A 12 (85.7%) 2 (14.3%) 0 (0.0%) 14
B 0 (0.0%) 1 (100.0%) 0 (0.0%) 1
C 0 (0.0%) 27 (100.0%) 0 (0.0%) 27
D 0 (0.0%) 8 (100.0%) 0 (0.0%) 8

Total 12 (24.0%) 38 (76.0%) 0 (0.0%) 50
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Note: Percentages in parentheses show the distribution of verification results within each grade.
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2 Problem Bias of a Sampled Halo Field, Difficulty level: 5

Problem Text:
In cosmology, large-scale cosmological dark-matter halo fields are biased tracers of the underlying Gaussian
matter density δm. Assume we have a sample δm. We simulate a halo number density field by taking
n(x) = n̄max(0,1 + bδm(x)), where bare number density n̄ and bare bias b are specified constants. What is
the bias of the sampled halo field? Derive an equation to evaluate the bias which depends on the bare bias
and the variance in each pixel.

2.1 Expert Solution

Detailed Steps: Detailed Steps: The solution to this question involves some domain knowledge, parts of
which were given in the problem’s statement, some approximations sourced by the domain knowledge, and
some mathematical calculations. The domain knowledge is very basic and should be known to anyone in the
field. Approximations are intuitive and also, mostly, inspired by the domain knowledge. Following Polya, we
can organize it as follows:

Understand the problem. The number density of halos nh(x) is defined as

Nh = ∫
V
nh(x)dx. (1)

The overdensity is defined as

δh(x) =
nh(x) − ⟨nh(x)⟩

⟨nh(x)⟩
. (2)

Linear bias is defined in terms of Fourier-transformed quantities:

δh(k) = bδm(k). (3)

This is an approximation that holds on sufficiently large scales (small k). δm(k) and δh(k) are Gaussian
random fields with zero mean and their variance depends only on the magnitude of the wave-vector k = ∣k∣:

δm ∼ N (0, Pmm(k)), δh ∼ N (0, Phh(k)). (4)

The quantity P (k) is called the power spectrum and is defined as

⟨δ(k)δ(k′)⟩ = (2π)3δD(k + k′)P (k). (5)

It immediately follows that
Phh(k) = b

2Pmm(k). (6)

We are given the expression in real space. In real space, the quantity δm(x) is also a Gaussian random field:

δm(x) ∼ N (0, ξm), δh(x) ∼ N (0, ξh). (7)

Quantity ξ is called a two-point (real-space) correlation function and is defined as

⟨δ(x)δ(x′)⟩ = ξ(∣x − x′∣). (8)

This quantity is sufficiently small when ∣x − x′∣≫ 1. We are asked to find what is the expression for b in the
equation δh(k) = bδm(k), given the real-space expression for the number density nh(x) in terms of real-space
sample of δm(x).

Devise a plan. The key point to solve this problem should be that real-space correlation function for halos
ξh should also be equal to b2ξm. We want to calculate that correlation function. It should be expressed in
terms of ⟨n(x)⟩ and ⟨nh(x)nh(x

′
)⟩. We expect to be able to calculate these expectations since they are the

expectations of functions of the Gaussian random variables. We are given the pixel variance σ. How does it
connect to the other quantities we know? In principle, that’s also the part of domain knowledge but it also
can be deducted from the definitions already given. A discretized version of the correlation function is

ξij = ⟨δxiδxj⟩. (9)
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When i = j, it becomes the pixel variance σ. Aside, we could have given instead of σ, the quantity Pmm(k),
that is a common description of a cosmological dark-matter field. In that case, from the definitions of ξ(r)
and Pmm(k), we could have deduced that σ = 1

V ∑k Pmm(k). Then we pick the ensemble of all the pixels
at given fixed large distance r = ∣xi − xj∣. The key is to recognize that it is fully described by a correlated
bivariate Gaussian distribution.

(δmi , δmj ) ∼ N (0,Σ) (10)

with a covariance

Σ = (
σ2 ξmr
ξmr σ2) . (11)

In general, the integrals from the expectation values are cumbersome, but we should expect some simplifica-
tions from the fact that ξ is small and we can Taylor-expand the pdf.

Carry out the plan. It’s more convenient to define δ̂i = δ
m
i /σ and ξ̂ = ξmr /σ

2, and ϕ2 - a correlated bivariate
Gaussian pdf - then

(δ̂i, δ̂j) ∼
e
− 1

2(1−ξ̂2)
[δ̂2i +δ̂

2
j−2ξ̂δ̂iδ̂j]

2π
√

1 − ξ̂2
≡ ϕ2(δ̂i, δ̂j ∣ξ̂). (12)

We note that

ξnr =
⟨ninj⟩

⟨n⟩2
− 1. (13)

The quantity ⟨n⟩ is the actual mean number density:

n̄
′

= ⟨n⟩ = ⟨ni⟩ = ∫ nloc
(δi, b, n̄)ϕ2(δ̂i, δ̂j ∣ξ̂)dδ̂idδ̂j = ∫ nloc

i ϕ1(δ̂i)dδ̂i.

Here, ϕ1 - is a standard normal pdf. It is expected that it’s not dependent on the correlation ξ̂, but only on
b and σ, just as the marginal of 2D correlated Gaussian distribution is 1D Gaussian that’s not dependent on
the cross-correlation. To the linear order in ξ̂,

ϕ2(x, y∣ξ̂) ≈ ϕ1(x)ϕ1(y)(1 + ξ̂xy). (14)

So that the two-point function neatly factorizes:

⟨ninj⟩ = ∫ nloc
(δi, b, n̄)n

loc
(δj , b, n̄)ϕ2(δ̂i, δ̂j ∣ξ̂)dδ̂idδ̂j

≈ ∫ nloc
i ϕ1(δ̂i)dδ̂i ∫ nloc

j ϕ1(δ̂j)dδ̂j + ξ̂∫ nloc
i ϕ1(δ̂i)δ̂idδ̂i ∫ nloc

j ϕ1(δ̂j)δ̂jdδ̂j

≡ ⟨n⟩2 + ξ̂⟨nδ̂⟩2.

Substituting the results for ⟨n⟩ and ⟨ninj⟩ in the equation for ξnr , we can read off the bias:

b
′2
=

ξnr

σ2ξ̂
=
⟨nδ̂⟩2

σ2⟨n⟩2
. (15)

All that is left is to calculate the expectations. One can evaluate for b ≥ 0

⟨n⟩ = ∫ nloc
i ϕ1(δ̂i)dδ̂i = ∫ n̄max(0,1 + bσx)ϕ1(x)dx

= n̄∫
+∞

− 1
bσ

(1 + bσx)ϕ1(x)dx = n̄ [Φ1 (
1

bσ
) + bσϕ1 (

1

bσ
)] .

For b < 0 it’s, however,

⟨n⟩ = n̄∫
+ 1
∣b∣σ

−∞
(1 − ∣b∣σx)ϕ1(x)dx

= n̄ [Φ1 (
1

∣b∣σ
) + ∣b∣σϕ1 (

1

∣b∣σ
)] .

So we conclude that the latter expression is valid for all b. Similarly, one can show that

⟨nδ̂⟩ = n̄∫ max(0,1 + bσx)xϕ1(x)dx = n̄bσΦ1 (
1

∣b∣σ
) (16)
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where Φ1(x) = ∫
x

−∞ ϕ1(x)dx - normal cdf. Finally, one can get

b
′

=
bΦ1 (

1
∣b∣σ )

Φ1 (
1
∣b∣σ ) + ∣b∣σϕ1 (

1
∣b∣σ )

. (17)

Note: We also accept solutions as correct if they omit the ∣ ∣ around the bias, since halo bias is usually positive.
Final Answer: The bias of the sampled halo field is given by:

b
′

=
bΦ1 (

1
∣b∣σ )

Φ1 (
1
∣b∣σ ) + ∣b∣σϕ1 (

1
∣b∣σ )

(18)

where Φ1 is the normal cumulative distribution function, ϕ1 is the standard normal probability density
function, b is the bare bias, and σ is the pixel variance.
Answer Requirements: Provide the answer in the form of the python code. Implement the following
function.

#let b_in stand for bare bias

def b_eff(sigma: float , b_in:float) -> float:

pass

Code Implementation:

from scipy.stats import norm

#let b_in stand for bare bias

def b_eff(sigma: float , b_in:float) -> float:

alpha = sigma*abs(b_in)

return b_in*norm.cdf(1/alpha)/(norm.cdf(1/alpha)+alpha*norm.pdf(1/alpha))

6



2.2 Model Solutions

2.2.1 Model: o1

Attempt 1 (2025-02-02T14:29:26.582566Z)

Detailed Solution:
Solution Explanation (Step-by-Step)

1. Understanding the Problem

We have an underlying matter density field δm(x) drawn (for simplicity) from a zero-mean Gaussian distri-
bution with variance σ2. We form a halo (number) density field

n(x) = n̄ max(0, 1 + b δm(x)),

where n̄ is a constant bare number density and b is the bare bias. We wish to find the resulting (effective)
bias of the halo density field, which we denote by beff .
By standard definitions in large-scale structure, if δh(x) is the halo overdensity,

δh(x) =
n(x) − ⟨n(x)⟩

⟨n(x)⟩
,

then the effective bias beff is given by

beff =
⟨ δh(x) δm(x)⟩

⟨ δm(x)2 ⟩
=
⟨ δh δm⟩

σ2
.

Because ⟨n(x)⟩ is the mean halo density (denoted n̄h below), one shows

⟨δh(x) δm(x)⟩ =
1

n̄h
⟨n(x) δm(x)⟩,

and thus

beff =
⟨n(x) δm(x)⟩

n̄h σ2
.

Hence, our task reduces to computing n̄h = ⟨n(x)⟩ and ⟨n(x) δm(x)⟩, and then forming their ratio appropri-
ately.

2. Key Integrals

Because max(0,1+ b δm(x)) is zero whenever 1+ b δm(x) < 0, the relevant region is δm(x) > −1/b. Denote the
Gaussian probability density of δm by

P (δm) =
1

√
2π σ

exp(−
δ2m
2σ2 ).

Then
n̄h = ⟨n(x)⟩ = n̄ ∫

∞

−1/b
(1 + b δm)P (δm)dδm,

⟨n(x) δm(x)⟩ = n̄ ∫
∞

−1/b
δm (1 + b δm)P (δm)dδm.

Because n̄ will cancel in the ratio, define the shorthand integrals

I0 = ∫
∞

−1/b
P (δm)dδm, I1 = ∫

∞

−1/b
δm P (δm)dδm, I2 = ∫

∞

−1/b
δ2m P (δm)dδm.

Then
n̄h = n̄ [I0 + b I1], ⟨nδm⟩ = n̄ [I1 + b I2].

Thus,

beff =
⟨nδm⟩

n̄h σ2
=

I1 + b I2

σ2 [I0 + b I1]
.
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3. Simplification via Gaussian Properties

A nice simplification emerges by noting that, for a mean-zero Gaussian,

I1 = ∫
∞

−1/b
δm P (δm)dδm =

σ
√
2π

exp(− 1
2 b2 σ2 ),

and
I0 = ∫

∞

−1/b
P (δm)dδm =

1
2
[1 + erf( 1

b
√

2σ
)].

One can also show that
I2 = σ2 I0 −

1
b
I1.

A brief algebraic check then shows
I1 + b I2 = bσ2 I0,

and hence

beff =
bσ2 I0

σ2 [I0 + b I1]
=

b I0
I0 + b I1

.

Using the explicit forms of I0 and I1, let

I0 =
1
2
[1 + erf(z)], I1 =

σ√
2π

exp(− z2), where z =
1

b
√
2σ

.

Then

beff(b, σ) =
b [ 1

2
(1 + erf(z))]

1
2
(1 + erf(z)) + b [ σ√

2π
e−z2]

=
b [1 + erf(z)]

[1 + erf(z)] + 2 b σ√
2π

exp(− z2)
.

This is often written more compactly as

beff(b, σ) =
b [1 + erf( 1

b
√

2σ
)]

1 + erf( 1

b
√

2σ
) + 2 b σ√

2π
exp[− 1

2 b2 σ2 ]
.

Final Symbolic Expression for beff ∶ beff(b, σ) =
b [1 + erf( 1

b
√

2σ
)]

1 + erf( 1

b
√

2σ
) + 2 b σ√

2π
exp[− 1

2 b2 σ2 ]
.

4. Conversion to Python Code
Below is a self-contained Python function that implements the above final formula. Note that we: take σ
and the bare bias b as input, compute z = 1/(b

√
2σ), evaluate the error function and exponential, return

beff .
Please ensure you have import math (for exp, , etc.) if you run this code in a Python script.

Final Answer:

import math

let b_in stand for the bare bias

def b_eff(sigma: float , b_in: float) -> float:

# z = 1 / (b_in * sqrt(2) * sigma)

z = 1.0 / (b_in * math.sqrt(2.0) * sigma)

# erf_z = erf(z) and e^{-z^2}

erf_z = math.erf(z)

exp_z2 = math.exp(-z*z)

# Numerator : b_in * (1 + erf_z)

numerator = b_in * (1.0 + erf_z)

# Denominator : (1 + erf_z) + 2 * b_in * sigma / sqrt(2 pi) * e^{-z^2}

denominator = (1.0 + erf_z) + 2.0 * b_in * sigma / math.sqrt(2.0 * math.pi) *

exp_z2
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# Return the effective bias

return numerator / denominator

This completes the derivation and provides the requested final Python implementation.
Verification Results:

Auto verification result ([’2025-02-18T05:49:40.260272+00:00’]) Status: Correct

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:59:59.188388Z) Grade: A
Notes: The submitted solution is physically equivalent to the standard solution. Both solutions derive the
effective bias of the halo density field, denoted as beff , using the same underlying principles and mathematical
framework. The submitted solution uses the error function erf and exponential terms to express the final
result, which is equivalent to the standard solution’s use of the normal cumulative distribution function Φ1

and the standard normal probability density function ϕ1. The approach and reasoning are correct, and the
Python implementation accurately reflects the derived formula.

Attempt 2 (2025-02-02T14:31:06.104899Z)

Detailed Solution:
Step-by-Step Solution

1. Understand the Problem

We have a Gaussian matter density field δm(x) with zero mean and variance σ2. We form a halo number
density field

n(x) = n̄ max(0, 1 + b δm(x)),

where n̄ is a constant bare number density and b is a bare bias. The question is to compute the effective bias
beff of the halo overdensity field defined by

δh(x) =
n(x) − ⟨n⟩

⟨n⟩
.

The effective bias is

beff =
⟨ δh(x) δm(x)⟩

⟨δm(x)2⟩
=
⟨ δh δm⟩

σ2
.

2. Devise a Plan

1. First compute ⟨n⟩, the mean of n(x). 2. Then form δh(x) = (n(x) − ⟨n⟩)/⟨n⟩. 3. Compute ⟨δh δm⟩. 4.
Divide by σ2 to find beff .
Because δm(x) is a Gaussian random variable with zero mean and variance σ2, denote

X = δm(x) ∼ N (0, σ
2
).

We then take expectation values over X.

3. Carry Out the Plan

(a) Compute ⟨n⟩:

Define
n(x) = n̄ max(0, 1 + bX) with X ∼ N (0, σ2

).

Hence
⟨n⟩ = n̄ ⟨max(0,1 + bX)⟩ = n̄ ∫

∞

−∞
max(0,1 + bx)p(x)dx,
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where

p(x) =
1

√
2π σ

exp(− x2

2σ2 )

is the normal (Gaussian) PDF with variance σ2. Since max(0,1 + bx) is zero whenever 1 + bx < 0, the
integration only contributes for x ≥ − 1

b
(assuming b > 0). Thus

⟨n⟩ = n̄∫
∞

−1/b
(1 + bx)p(x)dx.

Set a = − 1
b
. Then

⟨n⟩ = n̄ ∫
∞

a
(1 + bx)p(x)dx = n̄ N0,

where we define
N0 = ∫

∞

a
(1 + bx)p(x)dx.

(b) Compute ⟨n(x)X⟩:

We need ⟨nX⟩ to form ⟨δh δm⟩. Observe

⟨nX⟩ = n̄ ⟨max(0,1 + bX)X⟩ = n̄∫
∞

−∞
max(0,1 + bx)xp(x)dx.

Again, the integrand is nonzero only for x ≥ a, so

⟨nX⟩ = n̄∫
∞

a
(1 + bx)xp(x)dx = n̄ N1,

where we define
N1 = ∫

∞

a
(1 + bx)xp(x)dx.

(c) Compute ⟨δh δm⟩:

Recall

δh(x) =
n(x) − ⟨n⟩

⟨n⟩
Ô⇒ δh(x) δm(x) =

n(x)X

⟨n⟩
−
⟨n⟩X

⟨n⟩
=

n(x)X

⟨n⟩
− X.

Taking the expectation and noting ⟨X⟩ = 0, we get

⟨δh δm⟩ = ⟨
nX

⟨n⟩
⟩ =

1

⟨n⟩
⟨nX⟩ =

1

⟨n⟩
n̄N1 =

n̄N1

n̄N0
=
N1

N0
,

because ⟨n⟩ = n̄N0.

(d) Divide by σ2 to get beff :

Since the variance of δm is σ2, the effective bias is

beff =
⟨δh δm⟩

σ2
=

1

σ2

N1

N0
.

Thus we reduce the problem to calculating the integrals

N0 = ∫

∞

a
(1 + bx)p(x)dx,

N1 = ∫

∞

a
(1 + bx)xp(x)dx, where a = −

1

b
.

(e) Evaluate Gaussian integrals in closed form:

Let α = a
σ
= − 1

bσ
. Then the standard results for a normal PDF p(x) of variance σ2 give:

1. ∫
∞

a
p(x)dx = 1 − Φ(α), where Φ is the standard normal CDF.

2. ∫
∞

a
xp(x)dx = σ ϕ(α), where ϕ is the standard normal PDF, ϕ(α) = 1√

2π
exp(−α2

2
).
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3. ∫
∞

a
x2 p(x)dx = σ2

[1 + αϕ(α) − Φ(α)].

Hence

N0 = ∫

∞

a
(1)p(x)dx + b∫

∞

a
xp(x)dx = [1 −Φ(α)] + b [σ ϕ(α)],

N1 = ∫

∞

a
xp(x)dx + b∫

∞

a
x2 p(x)dx = σ ϕ(α) + bσ2

[1 + αϕ(α) −Φ(α)].

Thus

beff =
⟨δh δm⟩

σ2
=
N1

σ2N0
=

σ ϕ(α) + bσ2
[1 + αϕ(α) − Φ(α)]

σ2 [ (1 −Φ(α)) + bσ ϕ(α)]
.

One may also rewrite by factoring out σ2 if desired. In summary, with α = − 1
bσ

:

beff(σ, b) =
σ ϕ(α) + bσ2

[ 1 + αϕ(α) −Φ(α)]

σ2 [ (1 −Φ(α)) + bσ ϕ(α)]
, α = −

1

bσ
.

Final Symbolic Expression for beff

beff(σ, b) =
σ ϕ(− 1

bσ
) + bσ2

[1 − Φ(− 1
bσ
) + (− 1

bσ
)ϕ(− 1

bσ
)]

σ2
[(1 −Φ(− 1

bσ
)) + bσ ϕ(− 1

bσ
)]

.

(Using ϕ and Φ for the standard normal PDF/CDF.)

4. Convert to Python Code

Below is a Python function that implements the above result. It uses math.erf for the error function, math.exp
for exponentials, etc. The code has no external physical constants; it is fully selfcontained mathematically.

import math

def b_eff(sigma: float , b_in: float) -> float:

"""

Computes the effective bias b_eff given:

- sigma: float (standard deviation of the Gaussian matter field)

- b_in : float (bare bias)

Returns:

- b_eff : float (effective bias)

"""

# Define alpha = -1/( b_in * sigma)

alpha = -1.0/(b_in * sigma)

# Standard normal PDF(phi) and CDF(Phi) at alpha

# phi(alpha) = (1 / sqrt( 2 )) * exp(-alpha^2 / 2)

phi_alpha = (1.0 / math.sqrt(2.0 * math.pi)) * math.exp(-0.5 * alpha * alpha)

# Phi(alpha) = 0.5*(1 + erf(alpha/sqrt(2)))

Phi_alpha = 0.5 * (1.0 + math.erf(alpha / math.sqrt(2.0)))

# Numerator of b_eff:

# sigma * phi(alpha) + b_in * sigma^2 * [1 + alpha*phi(alpha) - Phi(alpha)]

numerator = sigma*phi_alpha + b_in*(sigma **2)*(1.0 + alpha*phi_alpha - Phi_alpha)

# Denominator of b_eff:

# sigma^2 * [ (1 - Phi(alpha)) + b_in * sigma * phi(alpha)]

denominator = (sigma **2)*((1.0 - Phi_alpha) + b_in*sigma*phi_alpha)

# Effective bias

return numerator / denominator

Final Answer:

beff(σ, b) =
σ ϕ(− 1

bσ
) + bσ2

[1 + (− 1
bσ
)ϕ(− 1

bσ
) −Φ(− 1

bσ
)]

σ2 [(1 −Φ(− 1
bσ
)) + bσ ϕ(− 1

bσ
)]

.
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Verification Results:

Auto verification result ([’2025-02-18T05:49:40.261804+00:00’]) Status: Correct

Evaluations:

Evaluated by gpt-4o (2025-02-04T01:00:05.749937Z) Grade: A
Notes: The submitted solution is equivalent to the standard solution. Both solutions derive the effective bias
beff using the same fundamental approach, involving the calculation of expectations over a Gaussian random
field and the use of the normal PDF and CDF. The submitted solution provides a detailed step-by-step
process, including the evaluation of Gaussian integrals and the final expression for beff . The final expressions
in both solutions are mathematically equivalent, although they are presented in slightly different forms. The
submitted solution also includes a Python implementation, which is a valid addition and does not detract
from the correctness of the mathematical solution.

Attempt 3 (2025-02-02T14:32:48.683429Z)

Detailed Solution:
Solution:

1. Understand the Problem

We have a Gaussian matter density field δm(x) with zero mean and variance σ2. We form a halo number
density field

n(x) = n̄ max(0, 1 + b δm(x)),

where n̄ and b are constants (often called the bare number density and bare bias, respectively). We wish to
determine the resulting effective bias beff of the sampled halo field.

2. Devise a Plan

Define the halo over-density field as

δh(x) =
n(x) − ⟨n(x)⟩

⟨n(x)⟩
.

On large scales (or in this simplified real-space argument), the effective bias beff is conventionally given by

beff =
⟨ δh(x) δm(x)⟩

⟨ δm(x)2⟩
.

We will compute the numerator and denominator carefully by performing the appropriate Gaussian averages.

3. Carry Out the Plan

—————————- ● Average halo density.
By definition,

⟨n(x)⟩ = ∫
∞

−∞
n̄ max(0, 1 + b δ) P (δ)dδ,

where P (δ) is the Gaussian probability density with mean 0 and variance σ2. Equivalently, since max(0, 1 +
b δ) = 0 when δ < −1/b,

⟨n(x)⟩ = n̄∫
∞

−1/b
(1 + b δ)P (δ)dδ.

Denote this mean by n. Then the halo over-density is

δh(x) =
n(x) − n

n
=

n̄ max(0, 1 + b δm(x)) − n

n
.

—————————- ● Effective bias formula.
By definition,

beff =
⟨δh(x) δm(x)⟩

⟨δm(x)2⟩
=
⟨ (

n(x)−n
n
) δm(x)⟩

σ2
,
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where σ2
= ⟨δ2m⟩. Observe that

n(x) = n̄ max(0, 1 + b δm(x)), n = n̄ ⟨max(0, 1 + b δm)⟩.

Hence,

δh(x) =
n(x)

n
− 1 =

n̄

n
max(0, 1 + b δm(x)) − 1.

Its correlation with δm is

⟨δh δm⟩ = ⟨ (
n̄
n
max(0,1 + b δm) − 1) δm⟩ =

n̄
n
⟨max(0,1 + b δm) δm⟩ − ⟨δm⟩.

But ⟨δm⟩ = 0. Therefore,
⟨δh δm⟩ =

n̄
n
⟨max(0,1 + b δm) δm⟩.

Hence

beff =
⟨δh δm⟩

σ2
=

n̄

nσ2
⟨max(0,1 + b δm) δm⟩.

Now note:
n = n̄ ⟨max(0,1 + b δm)⟩,

so

beff =
⟨max(0,1 + b δm) δm⟩

σ2 ⟨max(0,1 + b δm)⟩
.

—————————- ● Carrying out the Gaussian integrals.
Because δm ∼ N (0, σ

2
), define z = δ/σ. Then max(0,1 + b δ) ≠ 0 only if δ ≥ −1/b. Equivalently z ≥ xc, with

xc =
−1/b

σ
= −

1

bσ
.

Set ϕ(z) = 1√
2π

e−z
2/2 (standard normal PDF) and Φ(z) its CDF. Then:

∫

∞

−1/b
max(0,1 + b δ)P (δ)dδ = ∫

∞

xc

(1 + bσ z)ϕ(z) dz = [1 −Φ(xc)] + bσ ϕ(xc).

∫

∞

−1/b
max(0,1 + b δ) δ P (δ)dδ = ∫

∞

xc

(1 + bσ z) (σ z)ϕ(z) dz = σ ϕ(xc) + bσ2
[1 −Φ(xc)] + bσ2 xc ϕ(xc)

after appropriate integration by parts. One finds a convenient simplification:

σ ϕ(xc) + bσ2
[1 −Φ(xc) + xc ϕ(xc)] = σ2 b [1 −Φ(xc) ],

when xc = −1/(bσ).
Thus the numerator of beff becomes σ2 b [1−Φ(xc)], and the denominator is σ2

[1−Φ(xc)+bσ ϕ(xc)]. Therefore,

beff =
σ2 b [1 −Φ(xc) ]

σ2 [1 −Φ(xc) + bσ ϕ(xc) ]
=

b [1 −Φ(xc) ]

[1 −Φ(xc) ] + bσ ϕ(xc)
.

Recalling that xc = −
1
bσ

, and using Φ(−x) = 1 − Φ(x), ϕ(−x) = ϕ(x), we can also write an equivalent (often
more convenient) positive-argument form:

beff(b, σ) =
bΦ(1/(bσ))

Φ(1/(bσ)) + bσ ϕ(1/(bσ))
.

Hence, the closed-form expression for the effective bias of the sampled halo field is:

beff =
b [1 −Φ(− 1

bσ
)]

[1 −Φ(− 1
bσ
)] + bσ ϕ(− 1

bσ
)
=

bΦ( 1
bσ
)

Φ( 1
bσ
) + bσ ϕ( 1

bσ
)
.

Final Answer:
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beff(b, σ) =
bΦ( 1

bσ
)

Φ( 1
bσ
) + bσ ϕ( 1

bσ
)

4. Python Code Implementation

Below is a Python function that implements the final formula. It uses the error function erf from the math
library to compute the Gaussian CDF Φ and the exponential for the PDF ϕ. No external physical constants
or variables are used.

import math

def b_eff(sigma: float , b_in: float) -> float:

"""

Computes the effective bias b_eff for a halo density field

n(x) = nbar * max(0, 1 + b_in * delta_m)

where delta_m ~ Gaussian(mean=0, var=sigma^2).

Parameters

----------

sigma : float

Standard deviation of the matter density field delta_m.

b_in : float

Bare bias parameter b.

Returns

-------

float

The effective bias b_eff.

"""

# Standard normal PDF:

def phi(x: float) -> float:

return (1.0 / math.sqrt(2.0 * math.pi)) * math.exp(-0.5 * x * x)

# Standard normal CDF:

def Phi(x: float) -> float:

return 0.5 * (1.0 + math.erf(x / math.sqrt(2.0)))

# Avoid division by zero or invalid domain:

if b_in == 0.0 or sigma == 0.0:

return 0.0 # or handle as a special case if needed

x = 1.0 / (b_in * sigma)

numerator = b_in * Phi(x)

denominator = Phi(x) + b_in * sigma * phi(x)

return numerator / denominator

This completes the required solution.
Verification Results:

Auto verification result ([’2025-02-18T05:49:40.263347+00:00’]) Status: Correct

Evaluations:

Evaluated by gpt-4o (2025-02-04T01:00:12.849645Z) Grade: A
Notes: The submitted solution is physically equivalent to the standard solution. Both solutions derive the
effective bias beff using the same mathematical framework and arrive at the same final expression: beff(b, σ) =

bΦ( 1
bσ
)

Φ( 1
bσ
)+bσϕ( 1

bσ
) . The submitted solution provides a clear and detailed derivation, correctly applying Gaussian

integrals and demonstrating a solid understanding of the problem. The inclusion of a Python implementation
further supports the correctness and applicability of the solution.
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Attempt 4 (2025-02-02T14:34:37.554939Z)

Detailed Solution:
Solution Outline:

1. Understand the Problem

We have a continuous matter overdensity field δm(x) drawn from a zero-mean Gaussian distribution with
variance σ2. That is,

⟨δm(x)⟩ = 0, ⟨δm(x)
2
⟩ = σ2.

We form a halo number-density field

n(x) = n̄ max(0, 1 + b δm(x)),

where n̄ is a constant overall (bare) number density and b is the bare bias. The question is to find the effective
bias of this halo field, denoted beff .
By definition, if we write the halo overdensity field δh(x) as

δh(x) =
n(x) − ⟨n(x)⟩

⟨n(x)⟩
,

then the effective bias is

beff =
⟨δh(x) δm(x)⟩

⟨δm(x)2⟩
=
⟨δh δm⟩

σ2
.

2. Devise a Plan

1. Write δh(x) in terms of n(x). 2. Compute ⟨n(x)⟩. 3. Express δh(x) explicitly, then compute ⟨δh δm⟩. 4.
Divide by σ2 to obtain beff . 5. Carefully handle the max(0, ⋅) by integrating from the threshold δm = −1/b.

3. Carry Out the Plan

——————————————————————————–

Step A: Express ⟨n(x)⟩

Define
f(δm) = max(0, 1 + b δm).

Then
n(x) = n̄ f(δm(x)) Ô⇒ ⟨n(x)⟩ = n̄ ⟨f(δm)⟩.

Since δm is Gaussian with zero mean and variance σ2, let

P (δm) =
1

√
2π σ2

exp(−
δ2m
2σ2 )

be its probability density. Then

⟨f(δm)⟩ = ∫
∞

−∞
f(δm) P (δm) dδm = ∫

∞

−1/b
[1 + b δm ]

1
√
2π σ2

exp(−
δ2m
2σ2 )dδm,

where we used that max(0, 1 + b δm) = 0 for δm < −1/b.
——————————————————————————–

Step B: Express ⟨n(x) δm(x)⟩

Similarly,

⟨n(x) δm(x)⟩ = n̄∫
∞

−1/b
δm [1 + b δm ]

1
√
2π σ2

exp(−
δ2m
2σ2 )dδm.

——————————————————————————–

Step C: Halo overdensity δh(x)

By definition,

δh(x) =
n(x) − ⟨n(x)⟩

⟨n(x)⟩
=

n̄ f(δm) − n̄ ⟨f(δm)⟩

n̄ ⟨f(δm)⟩
=

f(δm) − ⟨f(δm)⟩

⟨f(δm)⟩
.
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Hence

⟨δh δm⟩ =
1

⟨f(δm)⟩
⟨f(δm) δm⟩ =

1

⟨f(δm)⟩
∫

∞

−1/b
δm [1 + b δm] P (δm) dδm.

——————————————————————————–

Step D: Final expression for beff

We divide by σ2
= ⟨δ2m⟩ to get the effective bias:

beff =
⟨δh δm⟩

σ2
=

∫

∞

−1/b
dδm δm (1 + b δm)P (δm)

σ2
∫

∞

−1/b
dδm (1 + b δm)P (δm)

where

P (δm) =
1

√
2π σ2

exp(−
δ2m
2σ2 ).

This integral can be expressed in closed form via the error function. Define

α = −
1

bσ
, ϕ(α) =

1
√
2π

exp(−α2

2
), Φ(α) = ∫

α

−∞
ϕ(z)dz.

Then

∫

∞

−1/b
(1 + b δm)P (δm)dδm = I0(α) + bσ I1(α),

∫

∞

−1/b
δm (1 + b δm)P (δm)dδm = σ I1(α) + bσ2 I2(α),

where
I0(α) = 1 −Φ(α), I1(α) = ϕ(α), I2(α) = αϕ(α) + [1 −Φ(α)].

Thus one obtains the compact closed-form expression

beff =
σ I1(α) + bσ2 I2(α)

σ2 [I0(α) + bσ I1(α)]
=

ϕ(α)
σ
+ b [αϕ(α) + 1 − Φ(α)]

[1 − Φ(α)] + bσ ϕ(α)
.

Either representation is valid. In summary, an explicit integral form that depends on σ and the bare bias b is

beff =
∫

∞

−1/b
δm (1 + b δm)P (δm)dδm

σ2
∫

∞

−1/b
(1 + b δm)P (δm)dδm

where P (δm) =
1

√
2π σ2

exp(−
δ2m
2σ2
).

Final Answer: beff(b, σ) =
∫

∞

−1/b
δm (1 + b δm)P (δm)dδm

σ2
∫

∞

−1/b
(1 + b δm)P (δm)dδm

.

——————————————————————————–

Python Code:

Below is a Python function that, given σ and the bare bias bin, evaluates beff(σ, bin) in closed form using
error-function utilities. We use

α = −
1

bin σ
, ϕ(α) =

1
√
2π

exp(−α2

2
), Φ(α) = 0.5[1 + erf( α√

2
)].
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def b_eff(sigma: float , b_in: float) -> float:

"""

Compute the effective bias b_eff for a halo field defined by

n(x) = nbar * max(0, 1 + b_in*delta_m(x)),

where delta_m is Gaussian - distributed with zero mean and variance sigma^2.

"""

import math

# Safety check: if b_in or sigma is zero or negative , the expression might

# become ill -defined (though physically typically b_in >0). We do not guard

# here beyond the basic math domain checks.

# Define alpha = -1 / (b_in * sigma)

alpha = -1.0 / (b_in * sigma)

# Standard Normal PDF at alpha

phi_alpha = 1.0 / math.sqrt(2.0 * math.pi) * math.exp(-0.5 * alpha **2)

# Standard Normal CDF at alpha

Phi_alpha = 0.5 * (1.0 + math.erf(alpha / math.sqrt(2.0)))

# I_0(alpha) = 1 - Phi(alpha)

I0 = 1.0 - Phi_alpha

# I_1(alpha) = phi(alpha)

I1 = phi_alpha

# I_2(alpha) = alpha * phi(alpha) + [1 - Phi(alpha)]

I2 = alpha * phi_alpha + I0

# Numerator = sigma*I1 + b_in*sigma^2*I2

numerator = sigma * I1 + b_in * sigma **2 * I2

# Denominator = sigma^2 * [I_0(alpha) + b_in*sigma*I_1(alpha)]

denominator = sigma ** 2 * (I0 + b_in * sigma * I1)

# b_eff is their ratio

return numerator / denominator

——————————————————————————–
In this code, I, I, and I correspond to the truncated Gaussian integrals in the solution above; the function
returns beff(sigma, bin)asafloat.
Verification Results:

Auto verification result ([’2025-02-18T05:49:40.264936+00:00’]) Status: Correct

Evaluations:

Evaluated by gpt-4o (2025-02-04T01:00:19.853730Z) Grade: A
Notes: The submitted solution correctly follows the problem-solving steps outlined in the standard solution.
It accurately defines the halo number-density field and the effective bias, beff , using the given Gaussian
distribution for the matter overdensity field. The solution derives the expressions for ⟨n(x)⟩ and ⟨n(x)δm(x)⟩
and correctly handles the integration limits due to the max function. The final expression for beff is consistent
with the standard solution, albeit in a different form, and the Python code provided correctly implements the
mathematical expressions using error functions. Overall, the solution demonstrates a clear understanding of
the problem and provides a mathematically equivalent result to the standard solution.

Attempt 5 (2025-02-02T14:36:58.628416Z)

Detailed Solution:
Solution Outline:

1. Understand the Problem
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We have a Gaussian matter density field δm(x) with zero mean and variance σ2. A bare (linear) bias b and
constant mean number density n̄ are given. We then construct a halo number density field:

n(x) = n̄ max(0, 1 + b δm(x)).

We wish to determine the effective bias beff of this halo field in terms of the bare bias b and the matter
variance σ2.

2. Devise a Plan

Recall that in large-scale structure, the halo overdensity δh is defined by

δh(x) =
n(x) − ⟨n(x)⟩

⟨n(x)⟩
,

and the matter overdensity is simply δm(x) (with ⟨δm⟩ = 0). The (scale-independent) bias is then given by

beff =
⟨ δh(x) δm(x)⟩

⟨ δm(x)2 ⟩
=
⟨n(x) δm(x)⟩

⟨n(x)⟩ ⟨δm(x)2⟩
.

Here,
⟨n(x)⟩ = n̄ ⟨max(0, 1 + b δm)⟩ and ⟨n(x) δm(x)⟩ = n̄ ⟨max(0, 1 + b δm) δm⟩.

Thus

beff =
⟨max(0, 1 + b δm) δm⟩

⟨max(0, 1 + b δm)⟩ σ2
,

where σ2
= ⟨δ2m⟩. Hence the problem reduces to evaluating these averages for a Gaussian random variable of

mean zero and variance σ2.

3. Carry Out the Plan

Let X ∼ N (0, σ2
). Then define

g(X) = max(0, 1 + bX).

We need two key integrals:
(a) The mean value of g(X):

⟨g(X)⟩ = ∫
∞

−∞
max(0, 1 + bx)

1
√
2π σ2

exp(− x2

2σ2 )dx.

Because max(0, 1 + bx) = 0 for x ≤ −1/b (assuming b > 0), we only integrate from x = −1/b to ∞. A standard
substitution shows that

⟨g(X)⟩ =
1

2
erfc(− 1√

2 bσ
) +

bσ
√
2π

exp(− 1
2 b2 σ2 ).

(b) The mean value of X g(X):

⟨X g(X)⟩ = ∫
∞

−∞
x max(0, 1 + bx)

1
√
2π σ2

exp(− x2

2σ2 )dx.

A similar calculation yields

⟨X g(X)⟩ =
bσ2

2
erfc(− 1√

2 bσ
).

Putting these together, recall that ⟨nδm⟩ = n̄ ⟨X g(X)⟩ and ⟨n⟩ = n̄ ⟨g(X)⟩. Also σ2
= ⟨X2

⟩. Therefore

beff =
⟨n(x) δm(x)⟩

⟨n(x)⟩σ2
=
⟨X g(X)⟩

⟨g(X)⟩σ2
=

bσ2

2
erfc(− 1√

2 bσ
)

[ 1
2
erfc(− 1√

2 bσ
) + bσ√

2π
exp(− 1

2b2 σ2 )]σ2
.

Canceling σ2 in numerator and denominator gives the closed-form expression for beff :

beff(b, σ) =

b
2
erfc(− 1√

2 bσ
)

1
2
erfc(− 1√

2 bσ
) + bσ√

2π
exp(− 1

2 b2 σ2 )
.
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Final Symbolic Expression:

beff(b, σ) =

b
2
erfc(− 1√

2 bσ
)

1
2
erfc(− 1√

2 bσ
) +

bσ
√
2π

exp(− 1
2 b2 σ2 )

.

Convert to Python Code

Below is a Python function implementing the above formula. Here, in the function signature, b in corresponds
to the bare bias b.
Note: We use math.erfc for the complementary error function, and math.exp for the exponential.
Final Answer:

import math

def b_eff(sigma: float , b_in: float) -> float:

"""

Returns the effective bias b_eff given:

- sigma: the RMS matter fluctuation (variance^0.5)

- b_in: the bare bias

according to the clipping prescription :

n(x) = n_bar * max(0, 1 + b_in * delta_m(x)).

"""

# Argument for the complementary error function

arg = -1.0 / (math.sqrt(2.0) * b_in * sigma)

# Numerator = (b_in / 2) * erfc(arg)

numerator = 0.5 * b_in * math.erfc(arg)

# Denominator = (erfc(arg)/2) + (b_in * sigma / sqrt(2*pi)) * exp(-1/(2*b_in^2*

sigma^2))

denominator = 0.5 * math.erfc(arg) \

+ (b_in * sigma / math.sqrt(2.0 * math.pi)) \

* math.exp(-1.0/(2.0 * b_in **2 * sigma **2))

return numerator / denominator

Verification Results:

Auto verification result ([’2025-02-18T05:49:40.266372+00:00’]) Status: Correct

Evaluations:

Evaluated by gpt-4o (2025-02-04T01:00:28.231505Z) Grade: A
Notes: The submitted solution correctly follows the problem-solving steps outlined in the standard solution.
It accurately defines the halo number density field and derives the effective bias beff using the given Gaussian
random field properties. The solution includes the necessary integrals and correctly applies the complementary
error function and exponential function to obtain the final expression for beff . The Python code provided
implements the derived formula accurately. The approach and final expression are consistent with the standard
solution, demonstrating a clear understanding of the problem and the mathematical concepts involved.

19



2.2.2 Model: o3-mini

Attempt 1 (2025-02-02T07:35:42.773451Z)

Detailed Solution: We begin with a sample of the matter density field, δm, which we assume is drawn from
a Gaussian distribution with zero mean and variance σ2, i.e.,

δm ∼ N (0, σ
2
).

The halo number density field is simulated by

n(x) = n̄ max (0,1 + b δm(x)) ,

where n̄ is the bare number density and b is the bare bias. Defining

f(δm) ≡max (0,1 + b δm) ,

we can write
n(x) = n̄ f(δm(x)).

Because the matter density field has zero mean we define the halo overdensity by

δh(x) ≡
n(x)

⟨n⟩
− 1 =

f(δm(x))

⟨f(δm)⟩
− 1,

where the expectation is taken over the distribution of δm. In what follows the averages involve

⟨f⟩ = ∫
∞

−∞
f(δm)p(δm)dδm,

with the probability density

p(δm) =
1

√
2π σ

exp(−
δ2m
2σ2
) .

Because

f(δm) =

⎧⎪⎪
⎨
⎪⎪⎩

1 + bδm, if δm ≥ −1/b,

0, if δm < −1/b,

the expectation value becomes

⟨f⟩ = ∫
∞

−1/b
(1 + bδm)p(δm)dδm.

Similarly, the numerator in the effective bias that we define below will involve

⟨δm f(δm)⟩ = ∫
∞

−1/b
δm(1 + bδm)p(δm)dδm.

A common definition of the (linear) effective bias, beff , is via the cross-correlation of δm and the halo over-
density δh:

beff =
⟨δm δh⟩

⟨δ2m⟩
=

1

σ2
⟨δm δh⟩.

Since ⟨δm⟩ = 0 we have

⟨δm δh⟩ = ⟨δm [
f

⟨f⟩
− 1]⟩ =

⟨δm f⟩

⟨f⟩
.

Thus,

beff =
1

σ2

⟨δm f⟩

⟨f⟩
.

To evaluate the two averages, it will be useful to change variables. Define the dimensionless variable

u =
δm
σ

,

so that

p(u) =
1
√
2π

e−u
2/2 and dδm = σ du.
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The threshold δm > −1/b becomes

u > uc, with uc = −
1

bσ
.

The mean value is then

⟨f⟩ = ∫
∞

uc

(1 + bσ u)
1
√
2π

e−u
2/2 du.

We can split the integral:

⟨f⟩ = ∫
∞

uc

1
√
2π

e−u
2/2 du

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I1

+bσ ∫
∞

uc

u
1
√
2π

e−u
2/2 du

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I2

.

It is known that
I1 = 1 −Φ(uc)

and
I2 = ϕ(uc),

where

Φ(x) =
1

2
[1 + erf (

x
√
2
)] and ϕ(x) =

1
√
2π

e−x
2/2.

Thus,
⟨f⟩ = [1 −Φ(uc)] + bσ ϕ(uc).

Similarly, we have

⟨δm f⟩ = ∫
∞

−1/b
δm(1 + bδm)p(δm)dδm.

Changing variables, note that δm = σ u and

⟨δm f⟩ = σ∫
∞

uc

u [1 + bσu]
1
√
2π

e−u
2/2 du.

Write this as

⟨δm f⟩ = σ

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∫

∞

uc

u
1
√
2π

e−u
2/2 du

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I2

+bσ ∫
∞

uc

u2 1
√
2π

e−u
2/2 du

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

It is known that
I2 = ϕ(uc)

and
I3 = uc ϕ(uc) + [1 −Φ(uc)] .

Thus,

⟨δm f⟩ = σ [ϕ(uc) + bσ(uc ϕ(uc) + (1 −Φ(uc)))] .

Now, the effective bias is given by

beff =
1

σ2

⟨δm f⟩

⟨f⟩
=

1

σ2

σ [ϕ(uc) + bσ(uc ϕ(uc) + (1 −Φ(uc)))]

[1 −Φ(uc)] + bσ ϕ(uc)
=

1

σ

ϕ(uc) + bσ(uc ϕ(uc) + (1 −Φ(uc)))

[1 −Φ(uc)] + bσ ϕ(uc)
.

Now, substitute

uc = −
1

bσ
.

Then,
bσ uc = −1,

so that
ϕ(uc) + bσ(uc ϕ(uc) + (1 −Φ(uc))) = ϕ(uc) − ϕ(uc) + bσ (1 −Φ(uc)) = bσ[1 −Φ(uc)].
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Thus,

beff =
1

σ

bσ[1 −Φ(uc)]

[1 −Φ(uc)] + bσ ϕ(uc)
=

b[1 −Φ(uc)]

[1 −Φ(uc)] + bσ ϕ(uc)
.

At this point it is convenient to use the symmetry properties of the normal distribution. Since

Φ(−x) = 1 −Φ(x) and ϕ(−x) = ϕ(x),

we write

1 −Φ(uc) = 1 −Φ(−
1

bσ
) = Φ(

1

bσ
)

and

ϕ(uc) = ϕ(−
1

bσ
) = ϕ(

1

bσ
).

Thus our final expression is

beff =
bΦ( 1

bσ
)

Φ( 1
bσ
) + bσ ϕ( 1

bσ
)
.

This is our final symbolic mathematical result.
We now convert the final expression into Python code. The following code implements the function:

import math

def b_eff(sigma: float , b_in: float) -> float:

"""

Effective bias of the halo field given a bare bias b_in and a per -pixel variance

sigma.

The effective bias is given by:

b_eff = [ b_in * Phi(1/( b_in*sigma)) ] / [ Phi(1/( b_in*sigma)) + b_in*sigma *

phi(1/( b_in*sigma)) ]

where phi(x) = 1/sqrt(2*pi) exp(-x^2/2) is the standard normal pdf and

Phi(x) = 0.5*(1 + erf(x/sqrt(2))) is the cumulative distribution function.

"""

# Define the standard normal PDF

def phi(x: float) -> float:

return (1.0 / math.sqrt(2 * math.pi)) * math.exp(-0.5 * x * x)

# Define the standard normal CDF

def Phi(x: float) -> float:

return 0.5 * (1 + math.erf(x / math.sqrt(2)))

A = 1.0 / (b_in * sigma)

numerator = b_in * Phi(A)

denominator = Phi(A) + b_in * sigma * phi(A)

return numerator / denominator

Example usage:

if __name__ == "__main__":

sigma_test = 0.1 # example variance per pixel

b_in_test = 2.0 # example bare bias

print("Effective bias:", b_eff(sigma_test , b_in_test))

The code defines a function beff(sigma ∶ float, bin ∶ float)thatcomputestheeffectivebiasaccordingtoourderivedexpression.
Final Answer:

beff =
bΦ(1/(bσ))

Φ(1/(bσ)) + bσ ϕ(1/(bσ))

with Φ(x) = 1
2
[1 + erf ( x√

2
)] and ϕ(x) = 1√

2π
e−x

2/2.

Verification Results:
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Auto verification result ([’2025-02-18T05:49:40.252824+00:00’]) Status: Correct

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:59:22.335213Z) Grade: A
Notes: The submitted solution is equivalent to the standard solution. Both solutions derive the effective bias
expression for the halo field, given by beff =

bΦ(1/(bσ))
Φ(1/(bσ))+bσ ϕ(1/(bσ)) . The submitted solution follows a clear and

logical approach, correctly applying the Gaussian distribution properties and integrating over the appropriate
ranges. The final expression matches the standard solution, demonstrating a correct understanding of the
problem and the necessary mathematical steps.

Attempt 2 (2025-02-02T07:36:50.553617Z)

Detailed Solution: We start with the Gaussian matter density field, δm, with zero mean and variance σ2.
In our model the halo number density is given by

n(x) = n̄ max{0, 1 + b δm(x)},

with a specified bare bias b and mean halo density n̄. Because of the max{0, 1+b δm} the halo field is obtained
by setting the number density to zero when

1 + b δm ≤ 0 ⇐⇒ δm ≤ −
1

b
.

The mean halo number density is

n̄h = ⟨n(x)⟩ = n̄ ⟨max{0, 1 + b δm}⟩.

We now define the halo overdensity as

δh ≡
n(x)

n̄h
− 1.

A common definition of the effective bias is by comparing the crosscorrelation ⟨δh δm⟩ with the matter variance:

beff =
⟨δh δm⟩

⟨δ2m⟩
.

Since δm has variance ⟨δ2m⟩ = σ
2 and writing the expectation explicitly (with the Gaussian probability distri-

bution function P (δm)) we have

⟨δh δm⟩ =
n̄

n̄h
⟨max{0, 1 + b δm} δm⟩.

Let us define

Id ≡ ∫
∞

−1/b
(1 + b δ)P (δ)dδ, In ≡ ∫

∞

−1/b
(1 + b δ) δ P (δ)dδ,

so that

n̄h = n̄ Id, ⟨δh δm⟩ =
n̄

n̄h
In.

Thus,

beff =
In

σ2 Id
.

Since δm is Gaussian with mean 0 and variance σ2, its probability density is

P (δ) =
1

√
2π σ

exp(−
δ2

2σ2
) .

We now compute these integrals. First, we use the change of variable
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u =
δ

σ
, dδ = σ du,

and note that the lower limit δ = −1/b corresponds to

u = −
1

bσ
.

The denominator becomes

Id = ∫
∞

−1/b
(1 + b δ)

1
√
2π σ

exp(−
δ2

2σ2
) dδ

= ∫

∞

−1/(bσ)
(1 + bσ u)

1
√
2π

exp(−
u2

2
) du.

Splitting the integral we have

Id = ∫
∞

−1/(bσ)

1
√
2π

e−u
2/2 du

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Id,1

+bσ ∫
∞

−1/(bσ)
u

1
√
2π

e−u
2/2 du

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Id,2

.

Now, the standard results are:

∫

∞

a

1
√
2π

e−u
2/2 du = 1 −Φ(a) = Φ(−a),

and

∫

∞

a
u

1
√
2π

e−u
2/2 du =

1
√
2π

exp(−
a2

2
) .

Setting

a = −
1

bσ
,

we obtain

Id,1 = 1 −Φ(−
1

bσ
) = Φ(

1

bσ
).

Also,

Id,2 =
1
√
2π

exp(−
1

2b2σ2
).

Thus,

Id = Φ(
1

bσ
) +

bσ
√
2π

exp(−
1

2b2σ2
).

Similarly, for the numerator

In = ∫
∞

−1/b
(1 + b δ) δ P (δ)dδ

= ∫

∞

−1/(bσ)
(1 + bσ u)σ u

1
√
2π

e−u
2/2 du

= σ ∫
∞

−1/(bσ)
u

1
√
2π

e−u
2/2 du + bσ2

∫

∞

−1/(bσ)
u2 1
√
2π

e−u
2/2 du.

We already know the first integral gives

∫

∞

−1/(bσ)
u

1
√
2π

e−u
2/2 du =

1
√
2π

exp(−
1

2b2σ2
).

For the second integral use the standard result
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∫

∞

a
u2 1
√
2π

e−u
2/2 du = a

1
√
2π

e−a
2/2
+ 1 −Φ(a),

with a = −1/(bσ). Since the Gaussian is even, we find

1 −Φ(−
1

bσ
) = Φ(

1

bσ
).

Thus, with a = −1/(bσ), note that ae−a
2/2
= − 1

bσ
exp(− 1

2b2σ2 ). Hence the second piece becomes

∫

∞

−1/(bσ)
u2 1
√
2π

e−u
2/2 du = −

1

bσ

1
√
2π

exp(−
1

2b2σ2
) +Φ(

1

bσ
).

Then

In = σ
1
√
2π

exp(−
1

2b2σ2
) + bσ2

[−
1

bσ

1
√
2π

exp(−
1

2b2σ2
) +Φ(

1

bσ
)]

= σ
1
√
2π

exp(−
1

2b2σ2
) − σ

1
√
2π

exp(−
1

2b2σ2
) + bσ2Φ(

1

bσ
)

= bσ2Φ(
1

bσ
).

Thus, the effective bias is

beff =
In

σ2 Id
=

bσ2Φ( 1
bσ
)

σ2 [Φ( 1
bσ
) + bσ√

2π
exp (− 1

2b2σ2 )]
=

bΦ( 1
bσ
)

Φ( 1
bσ
) +

bσ
√
2π

exp(−
1

2b2σ2
)

.

It is standard to write Φ(x) = 1
2
[1 + erf ( x√

2
)], so one may also express the above result as

beff =
bΦ ( 1

bσ
)

Φ ( 1
bσ
) +

bσ
√
2π

exp(−
1

2b2σ2
)

.

This is our final symbolic expression, which relates the effective bias beff of the sampled halo field to the bare
bias b and the variance σ2 (or standard deviation σ) in each pixel.
Below is the complete Python code that implements this expression.

import math

def b_eff(sigma: float , b_in: float) -> float:

"""

Compute the effective bias (b_eff) for a halo field given:

- sigma: standard deviation of the underlying Gaussian matter density field.

- b_in: the bare bias.

The effective bias is computed from:

b_eff = [b * Phi(1/(b*sigma))] / [Phi(1/(b*sigma)) + (b*sigma/sqrt(2*pi)) * exp(-

1/(2*b^2*sigma^2))]

where Phi(x) = 0.5*(1 + erf(x/sqrt(2))).

"""

# Ensure positive sigma and nonzero b_in to avoid division by zero.

if sigma <= 0 or b_in == 0:

raise ValueError("sigma must be positive and b_in must be nonzero.")

# Compute Phi(1/( b_in*sigma)) for the standard normal distribution .

x = 1/(b_in * sigma)

Phi = 0.5 * (1 + math.erf(x / math.sqrt(2)))

# Compute the extra term in the denominator .

extra_term = (b_in * sigma / math.sqrt(2 * math.pi)) * math.exp(-1/(2 * (b_in **2)

* (sigma **2)))

# Effective bias.
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return b_in * Phi / (Phi + extra_term)

Example usage:

if __name__ == "__main__":

sigma_example = 0.5 # example value for sigma

b_in_example = 2.0 # example value for the bare bias

print("Effective bias:", b_eff(sigma_example , b_in_example))

Final Answer:

beff =
bΦ ( 1

bσ
)

Φ ( 1
bσ
) +

bσ
√
2π

exp(−
1

2b2σ2
)

, with Φ(x) =
1

2
[1 + erf(

x
√
2
)].

Verification Results:

Auto verification result ([’2025-02-18T05:49:40.254380+00:00’]) Status: Correct

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:59:28.990867Z) Grade: A
Notes: The submitted solution correctly follows the standard solution’s approach to derive the effective bias
beff . It accurately defines the halo number density, mean halo number density, and halo overdensity. The
solution uses the correct integrals Id and In to compute the effective bias beff , matching the standard solution’s
final expression. The mathematical steps are detailed and consistent with the standard solution, including
the use of the Gaussian probability distribution and the change of variables. The final expression for beff is
equivalent to the standard solution, demonstrating a thorough understanding of the problem.

Attempt 3 (2025-02-02T07:37:42.800676Z)

Detailed Solution: We begin by noting that we have an underlying Gaussian matter field δm with

δm ∼ N (0, σ
2
).

The simulated halo number density is given by

n(x) = n̄ max (0, 1 + b δm(x)) ,

where n̄ and b (the bare bias) are specified constants. In what follows we will compute the effective bias of
the halo field that is defined via the cross-correlation

beff =
⟨δh δm⟩

⟨δm δm⟩
,

with the halo density contrast defined by

δh(x) =
n(x) − ⟨n⟩

⟨n⟩
.

Since
⟨δm δm⟩ = σ

2,

and because

⟨δh δm⟩ =
1

⟨n⟩
⟨nδm⟩,

we have

beff =
1

⟨n⟩σ2
⟨nδm⟩.

Let us now compute the two averages. First, note that

n(x) = n̄ max(0, 1 + b δm).
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Thus, the mean halo density is
⟨n⟩ = n̄ I0,

where
I0 = ∫

∞

−1/b
(1 + bx)p(x)dx,

with

p(x) =
1

√
2πσ2

exp [−
x2

2σ2
] .

Similarly, we must compute

⟨nδm⟩ = n̄ I1 with I1 = ∫
∞

−1/b
(1 + bx)xp(x)dx.

To simplify these integrals we change variables:

u =
x

σ
, x = σ u, dx = σ du,

and define the standard normal probability density function (pdf) and cumulative distribution function (cdf)

ϕ(u) =
1
√
2π

e−u
2/2, Φ(u) = ∫

u

−∞
ϕ(t)dt.

The lower limit becomes

u0 = −
1

bσ
.

Then the integrals become

I0 = σ∫
∞

u0

[1 + bσ u]ϕ(u)du = σ [∫
∞

u0

ϕ(u)du + bσ∫
∞

u0

uϕ(u)du] .

We recall the standard results:

∫

∞

u0

ϕ(u)du = 1 −Φ(u0), ∫

∞

u0

uϕ(u)du = ϕ(u0).

Thus,

I0 = σ[1 −Φ(u0) + bσ ϕ(u0)].

Similarly,

I1 = σ∫
∞

u0

u[1 + bσ u]ϕ(u)du = σ [∫
∞

u0

uϕ(u)du + bσ∫
∞

u0

u2 ϕ(u)du] .

We already have:

∫

∞

u0

uϕ(u)du = ϕ(u0).

For the second term, a standard result is:

∫

∞

u0

u2 ϕ(u)du = u0 ϕ(u0) + [1 −Φ(u0)] .

Hence,

I1 = σ [ϕ(u0) + bσ(u0 ϕ(u0) + 1 −Φ(u0))] .

Now, the effective bias is

beff =
⟨nδm⟩

⟨n⟩σ2
=

n̄ I1
n̄ I0 σ2

=
I1

I0 σ2
.

Plugging in the results,

beff =
σ [ϕ(u0) + bσ(u0 ϕ(u0) + 1 −Φ(u0))]

σ2 [1 −Φ(u0) + bσ ϕ(u0)]
=
ϕ(u0) + bσ(u0 ϕ(u0) + 1 −Φ(u0))

σ[1 −Φ(u0) + bσ ϕ(u0)]
.

Notice that in the numerator the term ϕ(u0) cancels with the −bσ ϕ(u0) arising from bσ u0 ϕ(u0) because

u0 = −
1

bσ
Ô⇒ bσ u0 = −1.
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Thus,

bσ(u0 ϕ(u0)) = −ϕ(u0),

and the numerator simplifies to:

ϕ(u0) − ϕ(u0) + bσ[1 −Φ(u0)] = bσ[1 −Φ(u0)].

Thus, we now have

beff =
bσ[1 −Φ(u0)]

σ[1 −Φ(u0) + bσ ϕ(u0)]
=

b[1 −Φ(u0)]

1 −Φ(u0) + bσ ϕ(u0)
.

Now, using the symmetry of the Gaussian cdf and pdf we note that

Φ(−z) = 1 −Φ(z) and ϕ(−z) = ϕ(z).

Since

u0 = −
1

bσ
,

we set

z =
1

bσ
,

so that

1 −Φ(u0) = 1 −Φ(−
1

bσ
) = Φ(

1

bσ
)

and

ϕ(u0) = ϕ(−
1

bσ
) = ϕ(

1

bσ
) .

Thus, the effective bias becomes

beff =
bΦ ( 1

bσ
)

Φ ( 1
bσ
) + bσ ϕ ( 1

bσ
)
.

This is our final symbolic expression for the effective bias in terms of the bare bias b and the variance σ2

(here σ is the standard deviation per pixel).
We now provide the corresponding Python code to implement this formula.

import math

def b_eff(sigma: float , b_in: float) -> float:

"""

Calculate the effective bias given the variance (sigma) per pixel

and the bare bias (b_in). The effective bias is given by

b_eff = [b_in * Phi(1/( b_in*sigma))] / [Phi(1/( b_in*sigma)) + b_in*sigma * phi(

1/( b_in*sigma))]

where Phi(z) = 0.5*(1 + erf(z/sqrt(2))) is the standard Gaussian CDF and

phi(z) = (1/sqrt(2*pi))*exp(-z^2/2) is the standard Gaussian PDF.

"""

# Avoid division by zero; in the limit sigma -> 0 we expect b_eff -> b_in.

if sigma == 0:

return b_in

z = 1/(b_in * sigma)

Phi = 0.5 * (1 + math.erf(z / math.sqrt(2)))

phi = 1 / math.sqrt(2 * math.pi) * math.exp(-z ** 2 / 2)

return (b_in * Phi) / (Phi + b_in * sigma * phi)

Example usage

if __name__ == "__main__":

# Test values: sigma and b_in

sigma_test = 0.5

b_in_test = 2.0

print("Effective bias:", b_eff(sigma_test , b_in_test))
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Final Answer:

beff =
bΦ ( 1

bσ
)

Φ ( 1
bσ
) + bσ ϕ ( 1

bσ
)
.

Verification Results:

Auto verification result ([’2025-02-18T05:49:40.255867+00:00’]) Status: Correct

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:59:35.760239Z) Grade: A
Notes: The submitted solution correctly follows the standard solution’s approach and arrives at the same final
expression for the effective bias beff . The solution includes all necessary steps, such as defining the Gaussian
fields, calculating the mean halo density, and computing the integrals for I0 and I1. The transformation
to standard normal variables and the use of the cumulative distribution function Φ and probability density
function ϕ are correctly applied. The final expression for beff matches the standard solution, demonstrating
a clear understanding of the problem and correct application of the mathematical concepts involved.

Attempt 4 (2025-02-02T07:38:40.200670Z)

Detailed Solution: We start with the simulated halo number density field given by

n(x) = n̄max(0,1 + b δm(x)).

It is common to define the halo overdensity by

δh(x) =
n(x) − n̄

n̄
=max(0,1 + b δm(x)) − 1.

Thus,

δh(x) =

⎧⎪⎪
⎨
⎪⎪⎩

−1, if 1 + b δm(x) < 0,

b δm(x), if 1 + b δm(x) ≥ 0.

Since 1 + b δm < 0 is equivalent to

b δm < −1,

we can write

δh(x) =

⎧⎪⎪
⎨
⎪⎪⎩

−1, δm < −
1
b
,

b δm, δm ≥ −
1
b
.

In cosmology the effective bias is often defined as the ratio of the crosscorrelation of the halo and matter
fields to the variance in the matter field:

beff =
⟨δh δm⟩

⟨δ2m⟩
.

Assuming that the matter field δm is Gaussian with zero mean and variance ⟨δ2m⟩ = σ2, we may write the
expectation as an integral over the Gaussian probability density function. Writing u ≡ δm (with probability
density function)

ϕ(u) =
1

√
2π σ

exp(−
u2

2σ2
),

we have

⟨δh δm⟩ = ∫
−1/b

−∞
(−1)uϕ(u)du

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I1

+∫

∞

−1/b
(bu)uϕ(u)du

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I2

.

Define the threshold
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T = −
1

b
.

Then,

I1 = ∫
T

−∞
(−u)ϕ(u)du, I2 = b∫

∞

T
u2 ϕ(u)du.

To proceed we change variables to a dimensionless variable

x =
u

σ
, u = σx, du = σ dx.

The threshold becomes

xT =
T

σ
= −

1

bσ
.

Define

λ ≡
1

bσ
,

so that xT = −λ.
Then,

I1 = ∫
−λ

−∞
[−σx]

1
√
2π

exp(−
x2

2
) (σ dx) = σ∫

−λ

−∞
(−x)

1
√
2π

exp(−
x2

2
)dx.

Notice that since

d

dx
[

1
√
2π

exp(−
x2

2
)] = −x

1
√
2π

exp(−
x2

2
),

we have

∫

−λ

−∞
(−x)

1
√
2π

exp(−
x2

2
)dx =

1
√
2π

exp(−
x2

2
)∣

x=−λ
=

1
√
2π

exp(−
λ2

2
).

Thus,

I1 = σ
1
√
2π

exp(−
λ2

2
).

Now, for I2 we have

I2 = b∫
∞

−1/b
u2 ϕ(u)du = bσ2

∫

∞

−λ
x2 1
√
2π

exp(−
x2

2
)dx.

We now recall a standard result for a truncated second moment of a standard Gaussian:

∫

∞

−λ
x2 1
√
2π

exp(−
x2

2
)dx = Φ(λ) − λ

1
√
2π

exp(−
λ2

2
),

where

Φ(λ) =
1
√
2π
∫

λ

−∞
exp(−

x2

2
)dx

is the cumulative distribution function (CDF) of the standard normal distribution.
Thus,

I2 = bσ
2
⎡
⎢
⎢
⎢
⎢
⎣

Φ(λ) − λ
1
√
2π

exp(−
λ2

2
)

⎤
⎥
⎥
⎥
⎥
⎦

.

Collecting the two pieces,

⟨δh δm⟩ = σ
1
√
2π

exp(−
λ2

2
) + bσ2

⎡
⎢
⎢
⎢
⎢
⎣

Φ(λ) − λ
1
√
2π

exp(−
λ2

2
)

⎤
⎥
⎥
⎥
⎥
⎦

.

Dividing by ⟨δ2m⟩ = σ
2 we obtain
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beff =
⟨δh δm⟩

σ2
=

1

σ

1
√
2π

exp(−
λ2

2
) + b

⎡
⎢
⎢
⎢
⎢
⎣

Φ(λ) − λ
1
√
2π

exp(−
λ2

2
)

⎤
⎥
⎥
⎥
⎥
⎦

.

Notice that

bλ =
b

bσ
=

1

σ
,

so that the two terms involving 1
σ

1√
2π

exp(−λ2

2
) cancel,

1

σ

1
√
2π

exp(−
λ2

2
) − bλ

1
√
2π

exp(−
λ2

2
) = 0.

Thus, we are left with a very simple answer:

beff = bΦ(
1

bσ
).

Recalling that the standard normal CDF can be written in terms of the error function as

Φ(x) =
1

2
[1 + erf(

x
√
2
)],

this result can also be expressed as

beff =
b

2
[1 + erf(

1
√
2 bσ
)].

This is the effective bias of the halo field in terms of the bare bias b and the variance σ2 in each pixel.
Now, we convert this final expression into Python code.

import math

let b_in stand for bare bias

def b_eff(sigma: float , b_in: float) -> float:

"""

Compute the effective bias of the sampled halo field.

Parameters :

sigma : float

The standard deviation (variance per pixel) of the matter density field.

b_in : float

The bare bias.

Returns:

float

The effective bias computed as:

b_eff = (b_in / 2) * [1 + erf(1 / (sqrt(2) * b_in * sigma))].

For sigma=0 the effective bias equals the bare bias.

"""

if sigma == 0:

return b_in

return b_in * 0.5 * (1 + math.erf(1 / (math.sqrt(2) * b_in * sigma)))

Example usage:

if __name__ == "__main__":

sigma_example = 0.5

b_in_example = 2.0

print("Effective bias:", b_eff(sigma_example , b_in_example))

Final Answer:

beff =
b

2
[1 + erf(

1
√
2 bσ
)]

Verification Results:
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Auto verification result ([’2025-02-18T05:49:40.257331+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:59:44.792236Z) Grade: C
Notes: The submitted solution provides a different expression for the effective bias beff compared to the stan-

dard solution. The standard solution derives b
′

=
bΦ1( 1

∣b∣σ
)

Φ1( 1
∣b∣σ
)+∣b∣σϕ1( 1

∣b∣σ
)
, while the submitted solution concludes

with beff =
b
2
[1+erf( 1√

2 bσ
)]. The approach in the submitted solution involves calculating the cross-correlation

and variance, but it diverges significantly from the standard solution’s method and result. The submitted
solution shows some understanding of the problem, but the final expression is not equivalent to the standard
solution’s result, indicating a major flaw in the approach or assumptions.

Attempt 5 (2025-02-02T07:39:39.168802Z)

Detailed Solution: We begin with a Gaussian matterdensity field, δm, with zero mean and variance σ2. In
our simulation the halo number density is given by

n(x) = n̄ max(0,1 + b δm(x)),

so that locally we define the mapping function

f(δm) =max(0,1 + b δm) =

⎧⎪⎪
⎨
⎪⎪⎩

1 + b δm, δm > −1/b,

0, δm ≤ −1/b.

Because the halo overdensity is defined as

δh(x) =
n(x) − n̄h

n̄h
=

f(δm)

⟨f(δm)⟩
− 1,

its cross correlation with the underlying field is

⟨δh δm⟩ =
⟨f(δm) δm⟩

⟨f(δm)⟩
.

Since the matter field has variance ⟨δ2m⟩ = σ
2, a natural definition for the effective bias is

beff ≡
⟨δh δm⟩

σ2
=

1

σ2

⟨f(δm) δm⟩

⟨f(δm)⟩
.

Thus, our task is to compute

A ≡ ⟨f(δm)⟩ = ∫
∞

−1/b
[1 + b δ]p(δ)dδ,

and
B ≡ ⟨f(δm) δm⟩ = ∫

∞

−1/b
δ [1 + b δ]p(δ)dδ,

where

p(δ) =
1

√
2π σ

exp(−
δ2

2σ2
)

is the probability density function for δm.
—
Step 1. Compute A = ⟨f(δm)⟩
We write

A = ∫
∞

−1/b
p(δ)dδ + b∫

∞

−1/b
δ p(δ)dδ.

Define the first integral as
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I1 = ∫
∞

−1/b
p(δ)dδ.

Changing variables to the standard normal, we let

z =
δ

σ
Ô⇒ dδ = σ dz,

so that

I1 = ∫
∞

−1/(bσ)

1
√
2π

exp(−
z2

2
)dz = Φ(

1

bσ
),

where we have used the symmetry of the Gaussian to write Φ(−x) = 1 −Φ(x) and, in particular,

1 −Φ(−
1

bσ
) = Φ(

1

bσ
).

Next, define

I2 = ∫
∞

−1/b
δ p(δ)dδ.

Again using the change of variable z = δ/σ,

I2 = σ∫
∞

−1/(bσ)
z

1
√
2π

exp(−
z2

2
)dz.

A standard result is

∫

∞

c
z

1
√
2π

exp(−
z2

2
)dz =

1
√
2π

exp(−
c2

2
),

which holds even if c is negative. Setting

c = −
1

bσ
,

we get

I2 = σ
1
√
2π

exp(−
1

2b2σ2
).

Thus, the average becomes

A = Φ(
1

bσ
) + bσ

1
√
2π

exp(−
1

2b2σ2
).

—
Step 2. Compute B = ⟨f(δm) δm⟩
We have

B = ∫
∞

−1/b
δ p(δ)dδ + b ∫

∞

−1/b
δ2 p(δ)dδ = I2 + b I3,

where

I3 = ∫
∞

−1/b
δ2 p(δ)dδ.

Changing again to z = δ/σ, we have

I3 = σ
2
∫

∞

−1/(bσ)
z2

1
√
2π

exp(−
z2

2
)dz.

A standard result for the Gaussian moments is

∫

∞

c
z2

1
√
2π

exp(−
z2

2
)dz = c

1
√
2π

exp(−
c2

2
) + [1 −Φ(c)].

Letting

c = −
1

bσ
,
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and using the symmetry Φ(−x) = 1 − Φ(x) (so that 1 − Φ(c) = Φ(1/(bσ))) and the fact that c exp(−c2/2) =

− 1
bσ

exp(− 1
2b2σ2 ), we have

I3 = σ
2
[−

1

bσ

1
√
2π

exp(−
1

2b2σ2
) +Φ(

1

bσ
)] = σ2Φ(

1

bσ
) −

σ

b
√
2π

exp(−
1

2b2σ2
).

Now,

B = I2 + b I3 = σ
1
√
2π

exp(−
1

2b2σ2
) + b [σ2Φ(

1

bσ
) −

σ

b
√
2π

exp(−
1

2b2σ2
)] .

Notice that the two terms proportional to σ√
2π

exp(− 1
2b2σ2 ) exactly cancel:

σ
1
√
2π

exp(−
1

2b2σ2
) − σ

1
√
2π

exp(−
1

2b2σ2
) = 0.

Thus we are left with

B = bσ2Φ(
1

bσ
).

—
Step 3. Write the Effective Bias
Recalling that

beff =
B

σ2A
,

we substitute in our expressions for A and B:

beff =
bσ2Φ( 1

bσ
)

σ2 [Φ( 1
bσ
) + bσ√

2π
exp(− 1

2b2σ2 )]
=

bΦ( 1
bσ
)

Φ( 1
bσ
) + bσ√

2π
exp(− 1

2b2σ2 )
.

This is our final symbolic expression for the effective bias as a function of the bare bias b and the variance σ2

(or standard deviation σ).
—
Final Answer (Symbolic):

beff(σ, b) =
bΦ( 1

bσ
)

Φ( 1
bσ
) + bσ√

2π
exp(− 1

2b2σ2 )
.

Here, Φ(x) is the cumulative distribution function (CDF) for a standard Gaussian:

Φ(x) =
1

2
[1 + erf(

x
√
2
)].

—
Step 4. Convert to Python Code
Below is the complete Python code implementing the function beff :

import math

def b_eff(sigma: float , b_in: float) -> float:

"""

Compute the effective bias of the halo field given the bare bias b_in and

the standard deviation sigma of the matter density field.

The effective bias is given by:

b_eff(sigma , b_in) = (b_in * Phi(1/( b_in*sigma))) /

(Phi(1/( b_in*sigma)) + (b_in * sigma / sqrt(2*pi)) * exp

(-1/(2*b_in **2

*sigma **2)))
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where Phi(x) is the cumulative distribution function (CDF) of the standard normal

:

Phi(x) = 0.5*(1 + erf(x/sqrt(2))).

Parameters :

sigma (float): Standard deviation of the matter density (per pixel).

b_in (float): The bare bias.

Returns:

float: The effective bias.

"""

# Calculate the standard normal CDF Phi(x) at x = 1/( b_in*sigma)

x = 1 / (b_in * sigma)

Phi = 0.5 * (1 + math.erf(x / math.sqrt(2)))

numerator = b_in * Phi

denominator = Phi + (b_in * sigma / math.sqrt(2 * math.pi)) * math.exp(-1/(2 *

b_in **2 * sigma **2))

return numerator / denominator

Example usage:

if __name__ == "__main__":

sigma_value = 0.5 # Example sigma

bare_bias = 2.0 # Example bare bias

print("Effective bias =", b_eff(sigma_value , bare_bias))

—
Final Answer:

beff(σ, b) =
bΦ( 1

bσ
)

Φ( 1
bσ
) + bσ√

2π
exp(− 1

2b2σ2 )
.

Verification Results:

Auto verification result ([’2025-02-18T05:49:40.258846+00:00’]) Status: Correct

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:59:52.173857Z) Grade: A
Notes: The submitted solution is physically equivalent to the standard solution. Both solutions derive the
effective bias beff as a function of the bare bias b and the standard deviation σ. The mathematical expressions
for beff are equivalent, with the submitted solution providing a detailed derivation using Gaussian integrals
and transformations. The approach and reasoning are correct, and the final expression matches the standard
solution’s result. The inclusion of Python code for computational implementation is a valid extension of the
solution.
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2.2.3 Model: deepseek-ai/DeepSeek-R1

Attempt 1 (2025-02-08T08:11:38.049634+00:00)

Detailed Solution:

from scipy.stats import norm

def b_eff(sigma: float , b_in: float) -> float:

x = 1 / (b_in * sigma)

phi_x = norm.pdf(x)

Phi_x = norm.cdf(x)

numerator = 2 * phi_x + b_in * sigma * Phi_x

denominator = sigma * (Phi_x + b_in * sigma * phi_x)

return numerator / denominator

Verification Results:

Auto verification result ([’2025-02-18T05:49:40.275489+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o ([’2025-02-08T21:33:32.662621+00:00’]) Grade: C
Notes: The submitted solution shows a basic understanding of the problem and attempts to derive the
effective bias beff using the given expressions. However, there are significant issues in the derivation process.
The solution does not correctly simplify the expressions for E1 and E2, leading to a final expression that does
not match the standard solution. The approach to compute the expectations E1 and E2 is overly complicated
and contains errors in handling the Gaussian integrals. The final Python function does not match the standard

solution’s expression for b′, which is b
′

=
bΦ1( 1

∣b∣σ
)

Φ1( 1
∣b∣σ
)+∣b∣σϕ1( 1

∣b∣σ
)
. The solution needs a more accurate computation

of the expectations and a correct simplification to match the standard result.

Attempt 2 (2025-02-08T08:14:59.940633+00:00)

Detailed Solution:
To determine the effective bias of the sampled halo field, we start by analyzing the relationship between the
halo number density field and the underlying Gaussian matter density field. The halo number density is
given by n(x) = n̄max(0,1 + bδm(x)), where n̄ is the average number density and b is the bare bias. The
effective bias beff is derived by considering the cross-correlation between the halo density contrast and the
matter density contrast.
Key Steps: 1. Expectation Values: - Compute the expectation of the halo number density E = ⟨max(0,1+
bδm)⟩. - Compute the cross-correlation ⟨max(0,1 + bδm)δm⟩.
2. Gaussian Integrals: - Use properties of the Gaussian distribution to evaluate integrals involving the
standard normal CDF (Φ) and PDF (ϕ).

3. Effective Bias Expression: - The effective bias is derived as beff =
bΦ(a)

Φ(a)+bσϕ(a) , where a = 1
bσ

, σ is the
standard deviation of the matter density field, and Φ and ϕ are the CDF and PDF of the standard normal
distribution.
Final Answer: The effective bias beff depends on the bare bias b and the variance σ2 of the matter density
field. The derived formula is implemented in Python as follows:

import numpy as np

from scipy.stats import norm

def b_eff(sigma: float , b_in: float) -> float:

sigma_sd = np.sqrt(sigma)

a = 1.0 / (b_in * sigma_sd)

phi_a = norm.pdf(a)

Phi_a = norm.cdf(a)

denominator = Phi_a + b_in * sigma_sd * phi_a
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return (b_in * Phi_a) / denominator

This code computes the effective bias using the standard normal CDF and PDF, ensuring the result accounts
for the truncation effect introduced by the max function in the halo density field.
Verification Results:

Auto verification result ([’2025-02-18T05:49:40.277631+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o ([’2025-02-08T21:33:45.114624+00:00’]) Grade: C
Notes: The submitted solution shows a basic understanding of the problem and attempts to derive the effective
bias by considering the cross-correlation between the halo density contrast and the matter density contrast.
However, the solution is overly verbose and contains significant errors in the derivation process. The final
expression for the effective bias does not match the standard solution. The standard solution provides a

clear and concise formula for the effective bias: b
′

=
bΦ1( 1

∣b∣σ
)

Φ1( 1
∣b∣σ
)+∣b∣σϕ1( 1

∣b∣σ
)
, where Φ1 is the normal cumulative

distribution function and ϕ1 is the standard normal probability density function. The submitted solution’s
final expression does not align with this, indicating a significant error in the approach.

Attempt 3 (2025-02-08T08:16:24.736112+00:00)

Detailed Solution:

import math

from scipy.special import ndtr

def b_eff(sigma: float , b_in: float) -> float:

z = 1 / (b_in * sigma)

phi = ndtr(z)

exponent_term = math.exp(-1 / (2 * (b_in **2 * sigma **2)))

denominator = phi + (b_in * sigma / math.sqrt(2 * math.pi)) * exponent_term

return (b_in * phi) / denominator

Final Answer:
The effective bias beff is given by the derived formula:

beff =
bΦ ( 1

bσ
)

Φ ( 1
bσ
) + bσ√

2π
e−1/(2b2σ2)

where Φ is the standard normal cumulative distribution function. The corresponding Python code implements
this solution.
Final Answer: The Python function above.
Verification Results:

Auto verification result ([’2025-02-18T05:49:40.279121+00:00’]) Status: Correct

Evaluations:

Evaluated by gpt-4o ([’2025-02-08T21:33:52.859086+00:00’]) Grade: A
Notes: The submitted solution correctly follows the steps outlined in the standard solution. It derives the
effective bias beff using the given formula for the halo number density n(x) = n̄max(0,1+bδm(x)). The solution
accurately computes the expectations needed to find beff, including the expectation of the max function over a

Gaussian distribution. The final expression for beff matches the standard solution: beff =
bΦ( 1

bσ
)

Φ( 1
bσ
)+ bσ
√

2π
e−1/(2b

2σ2)
.

The Python code provided correctly implements this formula, using the scipy library to compute the normal
CDF, which is appropriate for this context. Overall, the solution demonstrates a clear understanding of the
problem and provides a correct and complete answer.
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Attempt 4 (2025-02-08T08:18:17.133119+00:00)

Detailed Solution:

from scipy.stats import norm

def b_eff(sigma: float , b_in: float) -> float:

c = 1 / (b_in * sigma)

phi_c = norm.pdf(c)

Phi_c = norm.cdf(c)

numerator = b_in * Phi_c

denominator = Phi_c + b_in * sigma * phi_c

return numerator / denominator

Verification Results:

Auto verification result ([’2025-02-18T05:49:40.281212+00:00’]) Status: Correct

Evaluations:

Evaluated by gpt-4o ([’2025-02-08T21:34:00.730196+00:00’]) Grade: A
Notes: The submitted solution correctly derives the effective bias b′ in terms of the bare bias b and the
pixel variance σ. The solution follows a logical approach by considering the halo number density model
n(x) = n̄ ⋅ max(0,1 + bδm(x)), and correctly computes the expectations needed to find the effective bias.

The final expression for b′ matches the standard solution: b′ =
bΦ1( 1

∣b∣σ
)

Φ1( 1
∣b∣σ
)+∣b∣σϕ1( 1

∣b∣σ
)
, where Φ1 is the normal

cumulative distribution function and ϕ1 is the standard normal probability density function. The Python
code provided is also correct and implements the derived formula accurately.

Attempt 5 (2025-02-08T08:19:57.611062+00:00)

Detailed Solution:
To determine the effective bias beff of the sampled halo field, we start by analyzing the given halo number
density field n(x) = n̄max(0,1+ bδm(x)). The key steps involve computing the expectation values of the halo
density contrast and its correlation with the matter density contrast.
1. Expectation of Halo Density:

⟨n⟩ = n̄ [Φ(
1

bσ
) + bσϕ(

1

bσ
)]

where Φ and ϕ are the CDF and PDF of the standard normal distribution, respectively.
2. Halo Overdensity:

δh =
max(0,1 + bδm)

⟨n⟩/n̄
− 1

3. Correlation with Matter Density:

⟨δhδm⟩ =
1

⟨n⟩/n̄
[bσ2Φ(

1

bσ
)]

4. Effective Bias:

beff =
⟨δhδm⟩

σ2
=

bΦ ( 1
bσ
)

Φ ( 1
bσ
) + bσϕ ( 1

bσ
)

import scipy.stats as stats

def b_eff(sigma: float , b_in: float) -> float:

c = 1 / (b_in * sigma)

phi_c = stats.norm.pdf(c)

Phi_c = stats.norm.cdf(c)
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numerator = b_in * Phi_c

denominator = Phi_c + b_in * sigma * phi_c

return numerator / denominator

Final Answer: The effective bias beff is computed using the derived formula and implemented in the provided
Python function.
Verification Results:

Auto verification result ([’2025-02-18T05:49:40.283269+00:00’]) Status: Correct

Evaluations:

Evaluated by gpt-4o ([’2025-02-08T21:34:06.705296+00:00’]) Grade: A
Notes: The submitted solution correctly follows the steps outlined in the standard solution to derive the
effective bias beff. It accurately computes the expectation values of the halo density and its correlation with
the matter density, leading to the correct formula for beff. The Python implementation is consistent with the
derived formula, using scipy’s norm.pdf and norm.cdf functions to calculate the necessary statistical values.
The solution demonstrates a clear understanding of the problem and provides a valid and complete answer.
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2.2.4 Model: meta-llama/Meta-Llama-3.1-70B-Instruct

Attempt 1 (2025-01-31T06:24:21.666280Z)

Detailed Solution: To find the bias of the sampled halo field, we start by considering the definition of bias
in the context of cosmological large-scale structure. The bias b is defined as the ratio of the power spectrum
of the halo number density field n(x) to the power spectrum of the underlying matter density field δm(x).
However, in this case, we are interested in the effective bias beff that relates the mean of the halo number
density field to the mean of the underlying matter density field.
Given the halo number density field n(x) = n̄max(0,1 + bδm(x)), where n̄ is the bare number density and b
is the bare bias, we can calculate the effective bias beff by considering the expectation value of n(x).
We can write the expectation value of n(x) as:

⟨n(x)⟩ = n̄⟨max(0,1 + bδm(x))⟩

Since δm(x) is a Gaussian random field with zero mean and variance σ2, we can rewrite the expectation value
as:

⟨n(x)⟩ = n̄∫
∞

−∞
max(0,1 + bδm)

1
√
2πσ2

exp(−
δ2m
2σ2
)dδm

To evaluate this integral, we can split it into two parts:

⟨n(x)⟩ = n̄ [∫
−1/b

−∞
0

1
√
2πσ2

exp(−
δ2m
2σ2
)dδm + ∫

∞

−1/b
(1 + bδm)

1
√
2πσ2

exp(−
δ2m
2σ2
)dδm]

The first integral is zero, and the second integral can be evaluated using the error function (erf) and the
cumulative distribution function (CDF) of the normal distribution:

⟨n(x)⟩ = n̄ [1 + bσ
1
√
2π

exp(−
1

2b2σ2
) + bσ2

(1 −
1
√
2π
∫

∞

−1/bσ
exp(−

δ2m
2
)dδm)]

Using the definition of the error function, we can rewrite the integral as:

⟨n(x)⟩ = n̄ [1 + bσ
1
√
2π

exp(−
1

2b2σ2
) + bσ2

(1 −
1

2
erfc(−

1

bσ
))]

where erfc(x) = 2√
π ∫

∞
x exp(−t2)dt is the complementary error function.

The effective bias beff can be defined as the ratio of the expectation value of n(x) to the expectation value of
δm(x):

beff =
⟨n(x)⟩

n̄⟨δm(x)⟩

Since ⟨δm(x)⟩ = 0, we can rewrite the effective bias as:

beff =
⟨n(x)⟩

n̄bσ2

Substituting the expression for ⟨n(x)⟩, we get:

beff =
1

bσ2
[1 + bσ

1
√
2π

exp(−
1

2b2σ2
) + bσ2

(1 −
1

2
erfc(−

1

bσ
))]

This is the final symbolic mathematical expression for the effective bias beff.
Now, let’s convert this expression into Python code:

import numpy as np

from scipy.special import erfc

def b_eff(sigma: float , b_in: float) -> float:

"""

Calculate the effective bias of the sampled halo field.

Parameters :

sigma (float): The variance in each pixel.
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b_in (float): The bare bias.

Returns:

float: The effective bias.

"""

# Calculate the effective bias

b_eff = (1 / (b_in * sigma **2)) * (

1 + b_in * sigma * np.exp(-1 / (2 * b_in **2 * sigma **2)) / np.sqrt(2 * np.pi)

+ b_in * sigma **2 * (1 - 0.5 * erfc(-1 / (b_in * sigma)))

)

return b_eff

This code defines a function beffthattakesthevariancesigmaandthebarebiasbinasinputandreturnstheeffectivebias.Thefunctionusestheerfcfunctionfromthescipy.specialmoduletocalculatethecomplementaryerrorfunction.
Verification Results:

Auto verification result ([’2025-02-18T05:49:40.205323+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:55:02.612439Z) Grade: C
Notes: The submitted solution attempts to calculate the effective bias beff by integrating the halo number
density field n(x) = n̄max(0,1+ bδm(x)). However, there are significant issues: 1) The approach to calculate
beff is not aligned with the standard solution, which focuses on the correlation functions and their relation to
the bias. 2) The expression for beff derived in the submitted solution does not match the final expression for
b′ in the standard solution. 3) The submitted solution incorrectly assumes ⟨δm(x)⟩ = 0 leads to a division by
zero in the definition of beff. Despite these issues, the solution shows some understanding of the problem by
attempting to use Gaussian random fields and integrating over the probability density function.

Attempt 2 (2025-01-31T06:25:22.072429Z)

Detailed Solution: To derive the bias of the sampled halo field, we start by considering the definition of
the halo number density field:

n(x) = n̄max(0,1 + bδm(x))

The bias of the halo field is defined as the ratio of the halo overdensity to the matter overdensity. We can
write the halo overdensity as:

δh(x) =
n(x) − n̄

n̄

Substituting the expression for n(x), we get:

δh(x) =max(0,1 + bδm(x)) − 1

Since we are interested in the bias, we can expand the expression for δh(x) in terms of δm(x). We can do
this by considering the Taylor series expansion of the max function:

max(0,1 + bδm(x)) ≈ 1 + bδm(x) +
b2

2
δ2m(x) + ...

Substituting this expansion into the expression for δh(x), we get:

δh(x) ≈ bδm(x) +
b2

2
δ2m(x) + ...

The bias of the halo field is defined as the ratio of the halo overdensity to the matter overdensity. We can
write this as:

beff =
⟨δhδm⟩

⟨δ2m⟩

where ⟨...⟩ denotes the ensemble average.
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Substituting the expression for δh(x), we get:

beff =
⟨(bδm +

b2

2
δ2m + ...)δm⟩

⟨δ2m⟩

Assuming that the matter density field is Gaussian, we can simplify the expression for beff:

beff = b +
b2

2

⟨δ3m⟩

⟨δ2m⟩

Since the matter density field is Gaussian, the third moment is zero, and we are left with:

beff = b +
b2

2

⟨δ2m⟩

⟨δ2m⟩

However, we must consider the effect of the max function on the moments of the distribution. The max
function effectively truncates the distribution at δm = −1/b, which means that the moments of the distribution
are not the same as those of the underlying Gaussian distribution.
To account for this, we can use the fact that the variance of the truncated distribution is given by:

σ2
=

⟨δ2m⟩

1 − erfc(−1/bσ)/2

where erfc is the complementary error function.
Substituting this expression into the equation for beff, we get:

beff = b(1 −
1

2
erfc(−1/bσ))

−1

This is the final symbolic mathematical expression for the bias of the sampled halo field.
Here is the Python code that implements this expression:

import scipy.special as sp

def b_eff(sigma: float , b_in: float) -> float:

"""

Calculate the effective bias of the halo field.

Parameters :

sigma (float): The variance of the matter density field.

b_in (float): The bare bias.

Returns:

float: The effective bias of the halo field.

"""

# Calculate the complementary error function

erfc = sp.erfc(-1 / (b_in * sigma))

# Calculate the effective bias

b_eff = b_in / (1 - erfc / 2)

return b_eff

This code defines a function beffthattakesthevariancesigmaandthebarebiasbinasinputandreturnstheeffectivebiasofthehalofield.Thefunctionusesthescipy.specialmoduletocalculatethecomplementaryerrorfunction.
Verification Results:

Auto verification result ([’2025-02-18T05:49:40.206747+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:55:11.223282Z) Grade: C
Notes: The submitted solution shows a basic understanding of the problem by attempting to derive the bias
of the halo field using the definition of the halo number density and the halo overdensity. However, there are
significant issues in the approach. The solution uses a Taylor series expansion of the max function, which
is not appropriate for this context, as the max function introduces a non-linear truncation that cannot be
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captured by a simple Taylor expansion. Additionally, the solution incorrectly assumes that the third moment
of the Gaussian field is zero without considering the effect of truncation, leading to an incorrect expression
for the effective bias. The final expression for beff using the complementary error function does not match the
standard solution, which involves the normal cumulative distribution function Φ1 and the standard normal
probability density function ϕ1. The Python code provided also implements this incorrect expression. Overall,
the approach has some merit in attempting to relate the halo and matter overdensities, but the execution is
flawed.

Attempt 3 (2025-01-31T06:26:20.280679Z)

Detailed Solution: To derive the bias of the sampled halo field, we start with the given expression for the
halo number density field:

n(x) = n̄max(0,1 + bδm(x))

We can expand this expression by considering two cases: δm(x) ≥ −
1
b
and δm(x) < −

1
b
. However, for the

purpose of calculating the bias, we will focus on the case where δm(x) ≥ −
1
b
, as the bias is typically defined

in terms of the mean and variance of the density field.
The bias of the halo field is defined as the ratio of the halo overdensity to the matter overdensity:

b =
δn
δm

where δn =
n−n̄
n̄

is the halo overdensity.
We can rewrite the expression for n(x) as:

n(x) = n̄(1 + bδm(x))

Taking the mean of both sides, we get:

n̄ = n̄(1 + b⟨δm⟩)

where ⟨δm⟩ is the mean of the matter density field.
Subtracting n̄ from both sides and dividing by n̄, we get:

δn = bδm

However, this expression is not entirely accurate, as it does not take into account the non-linear relationship
between the halo and matter density fields.
To derive a more accurate expression for the bias, we can use the fact that the halo density field is a non-linear
transformation of the matter density field. Specifically, we can expand the expression for n(x) in terms of
the matter density field:

n(x) = n̄(1 + bδm(x) +
b2

2
δ2m(x) + ...)

Taking the mean of both sides, we get:

n̄ = n̄(1 + b⟨δm⟩ +
b2

2
⟨δ2m⟩ + ...)

Subtracting n̄ from both sides and dividing by n̄, we get:

δn = bδm +
b2

2
δ2m + ...

The bias of the halo field is then given by:

b =
⟨δnδm⟩

⟨δ2m⟩

Substituting the expression for δn, we get:
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b =
⟨(bδm +

b2

2
δ2m + ...)δm⟩

⟨δ2m⟩

Assuming that the matter density field is Gaussian, we can simplify this expression to:

b = b +
b2

2

⟨δ2m⟩

⟨δ2m⟩
+ ...

Simplifying further, we get:

b = b +
b2

2
+ ...

This expression can be rewritten as:

b =
b

1 − b
2
σ2

where σ2
= ⟨δ2m⟩ is the variance of the matter density field.

This is the final symbolic mathematical expression for the bias of the sampled halo field.
Now, let’s convert this expression into Python code:

def b_eff(sigma: float , b_in: float) -> float:

"""

Calculate the effective bias of the halo field.

Parameters :

sigma (float): The variance of the matter density field.

b_in (float): The bare bias of the halo field.

Returns:

float: The effective bias of the halo field.

"""

return b_in / (1 - b_in * sigma **2 / 2)

This code defines a function beffthattakesthevarianceofthematterdensityfieldsigmaandthebarebiasofthehalofieldbinasinput, andreturnstheeffectivebiasofthehalofield.
Verification Results:

Auto verification result ([’2025-02-18T05:49:40.208107+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:55:18.440068Z) Grade: C
Notes: The submitted solution shows some understanding of the problem by attempting to derive the bias
of the halo field using a non-linear expansion of the density field. However, it diverges significantly from the
standard solution, which involves a detailed statistical treatment using Gaussian random fields and correlation
functions. The submitted solution simplifies the problem by assuming a linear relationship and does not
account for the detailed statistical properties and approximations used in the standard solution. The final
expression for the bias, b = b

1− b
2
σ2 , is not equivalent to the standard solution’s expression for b′, which involves

the cumulative distribution function Φ1 and the probability density function ϕ1. The approach lacks the
necessary steps and reasoning to connect with the standard solution’s methodology.

Attempt 4 (2025-01-31T06:34:34.384532Z)

Detailed Solution: To find the bias of the sampled halo field, we first need to understand the relationship
between the halo number density field n(x) and the underlying matter density field δm(x). The halo number
density field is given by:

n(x) = n̄max(0,1 + bδm(x))

where n̄ is the bare number density and b is the bare bias.
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The bias of the halo field is defined as the ratio of the halo number density field to the matter density field.
To calculate this, we need to find the expectation value of the halo number density field.

⟨n(x)⟩ = n̄⟨max(0,1 + bδm(x))⟩

Since δm(x) is a Gaussian random field, we can write the expectation value as:

⟨max(0,1 + bδm(x))⟩ = ∫
∞

−∞
max(0,1 + bδm)N (δm; 0, σ2

)dδm

where N (δm; 0, σ2
) is the Gaussian probability distribution function with mean 0 and variance σ2.

Evaluating the integral, we get:

⟨max(0,1 + bδm(x))⟩ =
1

2
[1 + erf(

b
√
2σ
)]

where erf(x) is the error function.
The bias of the halo field is then given by:

beff =
⟨n(x)⟩

⟨δm(x)⟩
=
n̄⟨max(0,1 + bδm(x))⟩

⟨δm(x)⟩

Since ⟨δm(x)⟩ = 0, we need to use the second moment of the matter density field to calculate the bias:

beff =
n̄⟨max(0,1 + bδm(x))⟩

√
⟨δ2m(x)⟩

=
n̄⟨max(0,1 + bδm(x))⟩

σ

Substituting the expression for ⟨max(0,1 + bδm(x))⟩, we get:

beff =
n̄

2σ
[1 + erf(

b
√
2σ
)]

However, we can simplify this expression by noting that the bias is typically defined in terms of the linear
bias, which is given by:

beff =
n̄b

σ
Comparing this to our previous expression, we can see that:

beff =
b

σ

σ
√
2π
∫

∞

−∞
max(0,1 + bδm)e

−δ2m/2σ
2

dδm

Using the definition of the error function, we can rewrite this as:

beff =
b

σ

σ
√
2π
[
√
2πσ (1 + erf(

b
√
2σ
))]

Simplifying, we get:

beff = b(1 + erf(
b
√
2σ
))

However, this expression is still not correct. We need to use the correct definition of the bias, which is given
by:

beff =
∫
∞
−∞ δmmax(0,1 + bδm)N (δm; 0, σ2

)dδm

∫
∞
−∞ δ2mN (δm; 0, σ2)dδm

Evaluating the integrals, we get:

beff =

b√
2πσ ∫

∞
−∞ δme−δ

2
m/2σ

2

max(0,1 + bδm)dδm

σ2

Using the definition of the error function, we can rewrite this as:

beff =
b

√
2πσ3

∫

∞

−b
(δm + b)e

−δ2m/2σ
2

dδm
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Evaluating the integral, we get:

beff =
b

√
2πσ3

[−σ2e−b
2/2σ2

+ bσ

√
π

2
erfc(

b
√
2σ
)]

Simplifying, we get:

beff = b [1 −
1

√
2πbσ

e−b
2/2σ2

+
1

√
2πbσ

erfc(
b
√
2σ
)]

However, this expression is still not correct. We need to use the correct definition of the bias, which is given
by:

beff =
∫
∞
−∞ δmmax(0,1 + bδm)N (δm; 0, σ2

)dδm

σ2

Evaluating the integral, we get:

beff =
1

σ2
[

1
√
2πσ

∫

∞

−b
δme−δ

2
m/2σ

2

dδm +
b

√
2πσ

∫

∞

−b
e−δ

2
m/2σ

2

dδm]

Using the definition of the error function, we can rewrite this as:

beff =
1

σ2
[−σe−b

2/2σ2

+ b

√
π

2
erfc(

b
√
2σ
)]

Simplifying, we get:

beff =
b

σ
erfc(

b
√
2σ
) +

1
√
2πbσ

e−b
2/2σ2

However, this expression is still not correct. We need to use the correct definition of the bias, which is given
by:

beff =
∫
∞
−∞ δmmax(0,1 + bδm)N (δm; 0, σ2

)dδm

σ2

Evaluating the integral, we get:

beff =
1

σ2
[

1
√
2πσ

∫

∞

−b
δme−δ

2
m/2σ

2

dδm +
b

√
2πσ

∫

∞

−b
e−δ

2
m/2σ

2

dδm]

Using the definition of the error function, we can rewrite this as:

beff =
1

σ2
[−σe−b

2/2σ2

+ b

√
π

2
erfc(

b
√
2σ
)]

Simplifying, we get:

beff =
b

σ
erfc(

b
√
2σ
) +

1
√
2πbσ

e−b
2/2σ2

However, this expression is still not correct. We need to use the correct definition of the bias, which is given
by:

beff =
∫
∞
−∞ δmmax(0,1 + bδm)N (δm; 0, σ2

)dδm

σ2

Evaluating the integral, we get:

beff =
1

σ2
[

1
√
2πσ

∫

∞

−b
δme−δ

2
m/2σ

2

dδm +
b

√
2πσ

∫

∞

−b
e−δ

2
m/2σ

2

dδm]

Using the definition of the error function, we can rewrite this as:

beff =
1

σ2
[−σe−b

2/2σ2

+ b

√
π

2
erfc(

b
√
2σ
)]
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Simplifying, we get:

beff =
b

σ
erfc(

b
√
2σ
) +

1
√
2πbσ

e−b
2/2σ2

However, this expression is still not correct. We need to use the correct definition of the bias, which is given
by:

beff =
∫
∞
−∞ δmmax(0,1 + bδm)N (δm; 0, σ2

)dδm

σ2

Evaluating the integral, we get:

beff =
1

σ2
[

1
√
2πσ

∫

∞

−b
δme−δ

2
m/2σ

2

dδm +
b

√
2πσ

∫

∞

−b
e−δ

2
m/2σ

2

dδm]

Using the definition of the error function, we can rewrite this as:

beff =
1

σ2
[−σe−b

2/2σ2

+ b

√
π

2
erfc(

b
√
2σ
)]

Simplifying, we get:

beff =
b

σ
erfc(

b
√
2σ
) +

1
√
2πbσ

e−b
2/2σ2

However, this expression is still not correct. We need to use the correct definition of the bias, which is given
by:

beff =
∫
∞
−∞ δmmax(0,1 + bδm)N (δm; 0, σ2

)dδm

σ2

Evaluating the integral, we get:

beff =
1

σ2
[

1
√
2πσ

∫

∞

−b
δme−δ

2
m/2σ

2

dδm +
b

√
2πσ

∫

∞

−b
e−δ

2
m/2σ

2

dδm]

Using the definition of the error function, we can rewrite this as:

beff =
1

σ2
[−σe−b

2/2σ2

+ b

√
π

2
erfc(

b
√
2σ
)]

Simplifying, we get:

beff =
b

σ
erfc(

b
√
2σ
) +

1
√
2πbσ

e−b
2/2σ2

However, this expression is still not correct. We need to use the correct definition of the bias, which is given
by:

beff =
∫
∞
−∞ δmmax(0,1 + bδm)N (δm; 0, σ2

)dδm

σ2

Evaluating the integral, we get:

beff =
1

σ2
[

1
√
2πσ

∫

∞

−b
δme−δ

2
m/2σ

2

dδm +
b

√
2πσ

∫

∞

−b
e−δ

2
m/2σ

2

dδm]

Using the definition of the error function, we can rewrite this as:

beff =
1

σ2
[−σe−b

2/2σ2

+ b

√
π

2
erfc(

b
√
2σ
)]

Simplifying, we get:

beff =
b

σ
erfc(

b
√
2σ
) +

1
√
2πbσ

e−b
2/2σ2
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However, this expression is still not correct. We need to use the correct definition of the bias, which is given
by:

beff =
∫
∞
−∞ δmmax(0,1 + bδm)N (δm; 0, σ2

)dδm

σ2

Evaluating the integral, we get:

beff =
1

σ2
[

1
√
2πσ

∫

∞

−b
δme−δ

2
m/2σ

2

dδm +
b

√
2πσ

∫

∞

−b
e−δ

2
m/2σ

2

dδm]

Using the definition of the error function, we can rewrite this as:

beff =
1

σ2
[−σe−b

2/2σ2

+ b

√
π

2
erfc(

b
√
2σ
)]

Simplifying, we get:

beff =
b

σ
erfc(

b
√
2σ
) +

1
√
2πbσ

e−b
2/2σ2

However, this expression is still not correct. We need to use the correct definition of the bias, which is given
by:

beff =
∫
∞
−∞ δmmax(0,1 + bδm)N (δm; 0, σ2

)dδm

σ2

Evaluating the integral, we get:

beff =
1

σ2
[

1
√
2πσ

∫

∞

−b
δme−δ

2
m/2σ

2

dδm +
b

√
2πσ

∫

∞

−b
e−δ

2
m/2σ

2

dδm]

Using the definition of the error function, we can rewrite this as:

beff =
1

σ2
[−σe−b

2/2σ2

+ b

√
π

2
erfc(

b
√
2σ
)]

Simplifying, we get:

beff =
b

σ
erfc(

b
√
2σ
) +

1
√
2πbσ

e−b
2/2σ2

However, this expression is still not correct. We need to use the correct definition of the bias, which is given
by:

beff =
∫
∞
−∞ δmmax(0,1 + bδm)N (δm; 0, σ2

)dδm

σ2

Evaluating the integral, we get:

beff =
1

σ2
[

1
√
2πσ

∫

∞

−b
δme−δ

2
m/2σ

2

dδm +
b

√
2πσ

∫

∞

−b
e−δ

2
m/2σ

2

dδm]

Using the definition of the error function, we can rewrite this as:

beff =
1

σ2
[−σe−b

2/2σ2

+ b

√
π

2
erfc(

b
√
2σ
)]

Simplifying, we get:

beff =
b

σ
erfc(

b
√
2σ
) +

1
√
2πbσ

e−b
2/2σ2

However, this expression is still not correct. We need to use the correct definition of the bias, which is given
by:

beff =
∫
∞
−∞ δmmax(0,1 + bδm)N (δm; 0, σ2

)dδm

σ2
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Evaluating the integral, we get:

beff =
1

σ2
[

1
√
2πσ

∫

∞

−b
δme−δ

2
m/2σ

2

dδm +
b

√
2πσ

∫

∞

−b
e−δ

2
m/2σ

2

dδm]

Using the definition of the error function, we can rewrite this as:

beff =
1

σ2
[−σe−b

2/2σ2

+ b

√
π

2
erfc(

b
√
2σ
)]

Simplifying, we get:

beff =
b

σ
erfc(

b
√
2σ
) +

1
√
2πbσ

e−b
2/2σ2

However, this expression is still not correct. We need to use the correct definition of the bias, which is given
by:

beff =
∫
∞
−∞ δmmax(0,1 + bδm)N (δm; 0, σ2

)dδm

σ2

Evaluating the integral, we get:

beff =
1

σ2
[

1
√
2πσ

∫

∞

−b
δme−δ

2
m/2σ

2

dδm +
b

√
2πσ

∫

∞

−b
e−δ

2
m/2σ

2

dδm]

Using the definition of the error function, we can rewrite this as:

beff =
1

σ2
[−σe−b

2/2σ2

+ b

√
π

2
erfc(

b
√
2σ
)]

Simplifying, we get:

beff =
b

σ
erfc(

b
√
2σ
) +

1
√
2πbσ

e−b
2/2σ2

However, this expression is still not correct. We need to use the correct definition of the bias, which is given
by:

beff =
∫
∞
−∞ δmmax(0,1 + bδm)N (δm; 0, σ2

)dδm

σ2

Evaluating the integral, we get:

beff =
1

σ2
[

1
√
2πσ

∫

∞

−b
δme−δ

2
m/2σ

2

dδm +
b

√
2πσ

∫

∞

−b
e−δ

2
m/2σ

2

dδm]

Using the definition of the error function, we can rewrite this as:

beff =
1

σ2
[−σe−b

2/2σ2

+ b

√
π

2
erfc(

b
√
2σ
)]

Simplifying, we get:

beff =
b

σ
erfc(

b
√
2σ
) +

1
√
2πbσ

e−b
2/2σ2

However, this expression is still not correct. We need to use the correct definition of the bias, which is given
by:

beff =
∫
∞
−∞ δmmax(0,1 + bδm)N (δm; 0, σ2

)dδm

σ2

Evaluating the integral, we get:

beff =
1

σ2
[

1
√
2πσ

∫

∞

−b
δme−δ

2
m/2σ

2

dδm +
b

√
2πσ

∫

∞

−b
e−δ

2
m/2σ

2

dδm]
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Using the definition of the error function, we can rewrite this as:

beff =
1

σ2
[−σe−b

2/2σ2

+ b

√
π

2
erfc(

b
√
2σ
)]

Simplifying, we get:

beff =
b

σ
erfc(

b
√
2σ
) +

1
√
2πbσ

e−b
2/2σ2

However, this expression is still not correct. We need to use the correct definition of the bias, which is given
by:

beff =
∫
∞
−∞ δmmax(0,1 + bδm)N (δm; 0, σ2

)dδm

σ2

Evaluating the integral, we get:

beff =
1

σ2
[

1
√
2πσ

∫

∞

−b
δme−δ

2
m/2σ

2

dδm +
b

√
2πσ

∫

∞

−b
e−δ

2
m/2σ

2

dδm]

Using the definition of the error function, we can rewrite this as:

beff =
1

σ2
[−σe−b

2/2σ2

+ b

√
π

2
erfc(

b
√
2σ
)]

Simplifying, we get:

beff =
b

σ
erfc(

b
√
2σ
) +

1
√
2πbσ

e−b
2/2σ2

However, this expression is still not correct. We need to use the correct definition of the bias, which is given
by:

beff =
∫
∞
−∞ δmmax(0,1 + bδm)N (δm; 0, σ2

)dδm

σ2

Evaluating the integral, we get:

beff =
1

σ2
[

1
√
2πσ

∫

∞

−b
δme−δ

2
m/2σ

2

dδm +
b

√
2πσ

∫

∞

−b
e−δ

2
m/2σ

2

dδm]

Using the definition of the error function, we can rewrite this as:

beff =
1

σ2
[−σe−b

2/2σ2

+ b

√
π

2
erfc(

b
√
2σ
)]

Simplifying, we get:

beff =
b

σ
erfc(

b
√
2σ
) +

1
√
2πbσ

e−b
2/2σ2

However, this expression is still not correct. We need to use the correct definition of the bias, which is given
by:

beff =
∫
∞
−∞ δmmax(0,1 + bδm)N (δm; 0, σ2

)dδm

σ2

Evaluating the integral, we get:

beff =
1

σ2
[

1
√
2πσ

∫

∞

−b
δme−δ

2
m/2σ

2

dδm +
b

√
2πσ

∫

∞

−b
e−δ

2
m/2σ

2

dδm]

Using the definition of the error function, we can rewrite this as:

beff =
1

σ2
[−σe−b

2/2σ2

+ b

√
π

2
erfc(

b
√
2σ
)]
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Simplifying, we get:

beff =
b

σ
erfc(

b
√
2σ
) +

1
√
2πbσ

e−b
2/2σ2

However, this expression is still not correct. We need to use the correct definition of the bias, which is given
by:

beff =
∫
∞
−∞ δmmax(0,1 + bδm)N (δm; 0, σ2

)dδm

σ2

Evaluating the integral, we get:

beff =
1

σ2
[

1
√
2πσ

∫

∞

−b
δme−δ

2
m/2σ

2

dδm +
b

√
2πσ

∫

∞

−b
e−δ

2
m/2σ

2

dδm]

Using the definition of the error function, we can rewrite this as:

beff =
1

σ2
[−σe−b

2/2σ2

+ b

√
π

2
erfc(

b
√
2σ
)]

Simplifying, we get:

beff =
b

σ
erfc(

b
√
2σ
) +

1
√
2πbσ

e−b
2/2σ2

However, this expression is still not correct. We need to use the correct definition of the bias, which is given
by:

beff =
∫
∞
−∞ δmmax(0,1 + bδm)N (δm; 0, σ2

)dδm

σ2

Evaluating the integral, we get:

beff =
1

σ2
[

1
√
2πσ

∫

∞

−b
δ

Verification Results:

Auto verification result ([’2025-02-18T05:49:40.208146+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:55:26.169369Z) Grade: D
Notes: The submitted solution repeatedly attempts to derive the effective bias beff but fails to arrive at a
correct or consistent expression. The solution does not match the standard solution’s final expression for the

bias b
′

=
bΦ1( 1

∣b∣σ
)

Φ1( 1
∣b∣σ
)+∣b∣σϕ1( 1

∣b∣σ
)
. The submitted solution incorrectly uses the error function and does not correctly

handle the integration of the Gaussian random field. The approach lacks coherence and does not demonstrate
an understanding of the necessary steps to derive the bias correctly.

Attempt 5 (2025-01-31T06:35:39.790053Z)

Detailed Solution: To find the bias of the sampled halo field, we first need to understand the relationship
between the halo number density field n(x) and the underlying matter density field δm(x). The given
relationship is:

n(x) = n̄max(0,1 + bδm(x))

We can expand this expression by considering two cases: δm(x) ≥ −
1
b
and δm(x) < −

1
b
. However, since we are

interested in the bias, which is a statistical property, we will consider the ensemble average of n(x).
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Assuming δm(x) is a Gaussian random field with zero mean and variance σ2, we can write the ensemble
average of n(x) as:

⟨n(x)⟩ = n̄∫
∞

−∞
max(0,1 + bδm)N (δm; 0, σ2

)dδm

where N (δm; 0, σ2
) is the Gaussian probability density function.

Using the definition of the bias, we can write:

beff =
⟨n(x)⟩

n̄
− 1

Substituting the expression for ⟨n(x)⟩, we get:

beff = ∫
∞

−∞
max(0,1 + bδm)N (δm; 0, σ2

)dδm − 1

To evaluate this integral, we can split it into two parts:

beff = ∫
− 1

b

−∞
0 ⋅N (δm; 0, σ2

)dδm + ∫
∞

− 1
b

(1 + bδm)N (δm; 0, σ2
)dδm − 1

The first integral is zero, and the second integral can be evaluated using the properties of the Gaussian
distribution:

beff = ∫
∞

− 1
b

(1 + bδm)N (δm; 0, σ2
)dδm − 1

= 1 + b∫
∞

− 1
b

δmN (δm; 0, σ2
)dδm − 1

= b∫
∞

− 1
b

δmN (δm; 0, σ2
)dδm

Using the properties of the Gaussian distribution, we can write:

beff = b [σ
2
N (−

1

b
; 0, σ2

) +
1

b
(1 −Φ(−

1

bσ
))]

where Φ(x) is the cumulative distribution function of the standard normal distribution.
This is the final symbolic mathematical expression for the bias of the sampled halo field.
Now, let’s convert this expression into Python code:

import numpy as np

from scipy.stats import norm

def b_eff(sigma: float , b_in: float) -> float:

"""

Calculate the effective bias of the sampled halo field.

Parameters :

sigma (float): The standard deviation of the matter density field.

b_in (float): The bare bias.

Returns:

float: The effective bias of the sampled halo field.

"""

# Calculate the cumulative distribution function of the standard normal

distribution

cdf = norm.cdf(-1 / (b_in * sigma))

# Calculate the effective bias

b_eff = b_in * (sigma ** 2 * norm.pdf(-1 / b_in , 0, sigma) + 1 / b_in * (1 - cdf))

return b_eff

This code defines a function beffthattakesthestandarddeviationofthematterdensityfieldsigmaandthebarebiasbinasinputandreturnstheeffectivebiasofthesampledhalofield.Thefunctionusesthenormmodulefromthescipy.statspackagetocalculatethecumulativedistributionfunctionandtheprobabilitydensityfunctionofthestandardnormaldistribution.
Verification Results:
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Auto verification result ([’2025-02-18T05:49:40.210265+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:55:35.128768Z) Grade: C
Notes: The submitted solution shows a basic understanding of the problem by attempting to calculate the
bias of the sampled halo field using the ensemble average of the number density field. However, there are
significant issues. The submitted solution does not correctly derive the expression for the effective bias beff.
The integral setup and evaluation are incorrect, particularly in the handling of the Gaussian distribution and
the limits of integration. The final expression for beff does not match the standard solution’s expression for b′.
Additionally, the Python code provided does not correctly implement the mathematical expression derived in
the solution. The approach has some merit, but the execution is flawed, leading to an incorrect final result.
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2.2.5 Model: Qwen/Qwen2.5-72B-Instruct

Attempt 1 (2025-01-31T12:56:21.549353Z)

Detailed Solution: Step 1: Understand the Problem
We are given a halo number density field n(x) defined as:

n(x) = n̄max(0,1 + bδm(x))

where: - n̄ is the bare number density. - b is the bare bias. - δm(x) is the underlying Gaussian matter density
field.
We need to find the effective bias beff of the sampled halo field. The effective bias is defined as the ratio of
the variance of the halo number density field to the variance of the matter density field.
Step 2: Devise a Plan
1. Calculate the mean of the halo number density field:

⟨n(x)⟩ = n̄⟨max(0,1 + bδm(x))⟩

2. Calculate the variance of the halo number density field:

Var(n(x)) = ⟨n(x)2⟩ − ⟨n(x)⟩2

3. Calculate the variance of the matter density field:

Var(δm(x)) = ⟨δm(x)
2
⟩ − ⟨δm(x)⟩

2

4. Determine the effective bias:

beff =
Var(n(x))

Var(δm(x))

Step 3: Carry Out the Plan
Step 3.1: Calculate the Mean of the Halo Number Density Field
Since δm(x) is a Gaussian field with mean 0 and variance σ2:

⟨δm(x)⟩ = 0

⟨δm(x)
2
⟩ = σ2

The mean of the halo number density field is:

⟨n(x)⟩ = n̄⟨max(0,1 + bδm(x))⟩

The expectation of the maximum function can be calculated using the cumulative distribution function (CDF)
of the Gaussian distribution:

⟨max(0,1 + bδm(x))⟩ = ∫
∞

−∞
max(0,1 + bδm)

1
√
2πσ2

e
− δ2m

2σ2 dδm

This integral can be split into two parts:

⟨max(0,1 + bδm(x))⟩ = ∫
− 1

b

−∞
0 ⋅

1
√
2πσ2

e
− δ2m

2σ2 dδm + ∫
∞

− 1
b

(1 + bδm)
1

√
2πσ2

e
− δ2m

2σ2 dδm

The first integral is zero, and the second integral can be evaluated:

⟨max(0,1 + bδm(x))⟩ = ∫
∞

− 1
b

(1 + bδm)
1

√
2πσ2

e
− δ2m

2σ2 dδm

Using the properties of the Gaussian integral:

⟨max(0,1 + bδm(x))⟩ =
⎛

⎝
1 + bσ

√
2

π
e
− 1

2b2σ2
⎞

⎠
(1 − erf(−

1

bσ
√
2
))

Step 3.2: Calculate the Variance of the Halo Number Density Field
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The variance of the halo number density field is:

Var(n(x)) = ⟨n(x)2⟩ − ⟨n(x)⟩2

First, calculate ⟨n(x)2⟩:
⟨n(x)2⟩ = n̄2

⟨max(0,1 + bδm(x))
2
⟩

The expectation of the square of the maximum function can be calculated similarly:

⟨max(0,1 + bδm(x))
2
⟩ = ∫

∞

−∞
max(0,1 + bδm)

2 1
√
2πσ2

e
− δ2m

2σ2 dδm

This integral can be split into two parts:

⟨max(0,1 + bδm(x))
2
⟩ = ∫

− 1
b

−∞
0 ⋅

1
√
2πσ2

e
− δ2m

2σ2 dδm + ∫
∞

− 1
b

(1 + bδm)
2 1
√
2πσ2

e
− δ2m

2σ2 dδm

The first integral is zero, and the second integral can be evaluated:

⟨max(0,1 + bδm(x))
2
⟩ = ∫

∞

− 1
b

(1 + 2bδm + b
2δ2m)

1
√
2πσ2

e
− δ2m

2σ2 dδm

Using the properties of the Gaussian integral:

⟨max(0,1 + bδm(x))
2
⟩ = 1 + 2bσ

√
2

π
e
− 1

2b2σ2 + b2σ2
(1 − erf(−

1

bσ
√
2
))

Step 3.3: Calculate the Variance of the Matter Density Field
The variance of the matter density field is:

Var(δm(x)) = σ
2

Step 3.4: Determine the Effective Bias
The effective bias is:

beff =
Var(n(x))

Var(δm(x))

Substitute the expressions for the variances:

beff =
n̄2
(1 + 2bσ

√
2
π
e
− 1

2b2σ2 + b2σ2
(1 − erf (− 1

bσ
√

2
))) − (n̄(1 + bσ

√
2
π
e
− 1

2b2σ2 )(1 − erf (− 1

bσ
√

2
)))

2

σ2

Simplify the expression:

beff =
n̄2
(1 + 2bσ

√
2
π
e
− 1

2b2σ2 + b2σ2
(1 − erf (− 1

bσ
√

2
))) − n̄2

(1 + bσ
√

2
π
e
− 1

2b2σ2 )
2

(1 − erf (− 1

bσ
√

2
))

2

σ2

beff =
n̄2
(1 + 2bσ

√
2
π
e
− 1

2b2σ2 + b2σ2
(1 − erf (− 1

bσ
√

2
)) − (1 + 2bσ

√
2
π
e
− 1

2b2σ2 + b2σ2
(1 − erf (− 1

bσ
√

2
)))(1 − erf (− 1

bσ
√

2
))

2
)

σ2

beff =
n̄2
(1 + 2bσ

√
2
π
e
− 1

2b2σ2 + b2σ2
(1 − erf (− 1

bσ
√

2
)) − (1 + 2bσ

√
2
π
e
− 1

2b2σ2 + b2σ2
(1 − erf (− 1

bσ
√

2
)))(1 − erf (− 1

bσ
√

2
))

2
)

σ2

Final Answer
The effective bias beff is given by:

beff =
n̄2
(1 + 2bσ

√
2
π
e
− 1

2b2σ2 + b2σ2
(1 − erf (− 1

bσ
√

2
)) − (1 + 2bσ

√
2
π
e
− 1

2b2σ2 + b2σ2
(1 − erf (− 1

bσ
√

2
)))(1 − erf (− 1

bσ
√

2
))

2
)

σ2

Python Code
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import math

from scipy.special import erf

def b_eff(sigma: float , b_in: float) -> float:

term1 = 1 + 2 * b_in * sigma * math.sqrt(2 / math.pi) * math.exp(-1 / (2 * b_in **

2 * sigma **2))

term2 = b_in **2 * sigma **2 * (1 - erf(-1 / (b_in * sigma * math.sqrt(2))))

term3 = (1 + 2 * b_in * sigma * math.sqrt(2 / math.pi) * math.exp(-1 / (2 * b_in

**2 * sigma **2)) + b_in **2 * sigma **2

* (1 - erf(-1 / (b_in * sigma * math.

sqrt(2)))))

term4 = (1 - erf(-1 / (b_in * sigma * math.sqrt(2))))**2

numerator = term1 + term2 - term3 * term4

denominator = sigma ** 2

return numerator / denominator

This Python function beffcalculatestheeffectivebiasbeff given the variance σ and the bare bias bin.
Verification Results:

Auto verification result ([’2025-02-18T05:49:40.211846+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:55:44.367942Z) Grade: C
Notes: The submitted solution demonstrates a basic understanding of the problem by attempting to calculate
the effective bias beff through the variance of the halo number density field and the matter density field.
However, there are significant issues in the approach and execution. The submitted solution does not align
with the standard solution’s approach, which involves calculating the bias b′ using the correlation functions
and expectations of Gaussian random variables. The submitted solution focuses on calculating variances
and uses a different method involving the error function erf, which is not present in the standard solution.
Additionally, the final expression for beff is not equivalent to the standard solution’s expression for b′. The
approach has some merit, but it deviates significantly from the correct method and result.

Attempt 2 (2025-01-31T12:58:50.204662Z)

Detailed Solution: Step-by-Step Solution
1. Understand the Problem
-Unknown: The effective bias beff of the sampled halo field. -Given Data: - The matter density field δm(x).
- The bare number density n̄. - The bare bias b. - The halo number density field n(x) = n̄max(0,1+ bδm(x)).
- Conditions: - The matter density field δm(x) is Gaussian. - The variance of δm(x) in each pixel is σ2.
2. Devise a Plan
- Step 1: Express the mean halo number density ⟨n(x)⟩. - Step 2: Express the mean matter density ⟨δm(x)⟩.
- Step 3: Compute the cross-correlation ⟨n(x)δm(x)⟩. - Step 4: Use the definition of bias to find beff.
3. Carry Out the Plan
Step 1: Mean Halo Number Density
The mean halo number density is given by:

⟨n(x)⟩ = n̄⟨max(0,1 + bδm(x))⟩

Since δm(x) is Gaussian with mean 0 and variance σ2, we can use the properties of the Gaussian distribution
to evaluate the expectation:

⟨max(0,1 + bδm(x))⟩ = ∫
∞

−∞
max(0,1 + bδm)

1
√
2πσ2

e
− δ2m

2σ2 dδm

This integral can be split into two parts:

⟨max(0,1 + bδm(x))⟩ = ∫
− 1

b

−∞
0 ⋅

1
√
2πσ2

e
− δ2m

2σ2 dδm + ∫
∞

− 1
b

(1 + bδm)
1

√
2πσ2

e
− δ2m

2σ2 dδm
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The first integral is zero, and the second integral can be evaluated:

⟨max(0,1 + bδm(x))⟩ = ∫
∞

− 1
b

(1 + bδm)
1

√
2πσ2

e
− δ2m

2σ2 dδm

This can be split into two integrals:

⟨max(0,1 + bδm(x))⟩ = ∫
∞

− 1
b

1
√
2πσ2

e
− δ2m

2σ2 dδm + b∫
∞

− 1
b

δm
1

√
2πσ2

e
− δ2m

2σ2 dδm

The first integral is the cumulative distribution function (CDF) of the Gaussian evaluated at − 1
b
:

∫

∞

− 1
b

1
√
2πσ2

e
− δ2m

2σ2 dδm = 1 −Φ(−
1

bσ
)

The second integral is the mean of the Gaussian distribution truncated at − 1
b
:

∫

∞

− 1
b

δm
1

√
2πσ2

e
− δ2m

2σ2 dδm = σϕ(−
1

bσ
)

Thus:

⟨max(0,1 + bδm(x))⟩ = 1 −Φ(−
1

bσ
) + bσϕ(−

1

bσ
)

Step 2: Mean Matter Density
The mean matter density is:

⟨δm(x)⟩ = 0

Step 3: Cross-Correlation
The cross-correlation is:

⟨n(x)δm(x)⟩ = n̄⟨max(0,1 + bδm(x))δm(x)⟩

This can be evaluated as:

⟨max(0,1 + bδm(x))δm(x)⟩ = ∫
∞

− 1
b

(1 + bδm)δm
1

√
2πσ2

e
− δ2m

2σ2 dδm

This integral can be split into two parts:

⟨max(0,1 + bδm(x))δm(x)⟩ = ∫
∞

− 1
b

δm
1

√
2πσ2

e
− δ2m

2σ2 dδm + b∫
∞

− 1
b

δ2m
1

√
2πσ2

e
− δ2m

2σ2 dδm

The first integral is the mean of the Gaussian distribution truncated at − 1
b
:

∫

∞

− 1
b

δm
1

√
2πσ2

e
− δ2m

2σ2 dδm = σϕ(−
1

bσ
)

The second integral is the second moment of the Gaussian distribution truncated at − 1
b
:

∫

∞

− 1
b

δ2m
1

√
2πσ2

e
− δ2m

2σ2 dδm = σ
2
(1 −Φ(−

1

bσ
)) + σ2

(
1

bσ
)ϕ(−

1

bσ
)

Thus:

⟨max(0,1 + bδm(x))δm(x)⟩ = σϕ(−
1

bσ
) + bσ2

(1 −Φ(−
1

bσ
) +

1

bσ
ϕ(−

1

bσ
))

Step 4: Effective Bias
The effective bias beff is given by:

beff =
⟨n(x)δm(x)⟩

⟨n(x)⟩⟨δm(x)⟩

Since ⟨δm(x)⟩ = 0, we use the variance σ2:

beff =
⟨n(x)δm(x)⟩

⟨n(x)⟩σ2

57



Substituting the expressions:

beff =
σϕ (− 1

bσ
) + bσ2

(1 −Φ (− 1
bσ
) + 1

bσ
ϕ (− 1

bσ
))

σ2 (1 −Φ (− 1
bσ
) + bσϕ (− 1

bσ
))

Simplifying:

beff =
ϕ (− 1

bσ
) + bσ (1 −Φ (− 1

bσ
) + 1

bσ
ϕ (− 1

bσ
))

σ (1 −Φ (− 1
bσ
) + bσϕ (− 1

bσ
))

Final Answer

import scipy.stats as stats

def b_eff(sigma: float , b_in: float) -> float:

z = -1 / (b_in * sigma)

phi_z = stats.norm.pdf(z)

Phi_z = stats.norm.cdf(z)

numerator = phi_z + b_in * sigma * (1 - Phi_z + (1 / (b_in * sigma)) * phi_z)

denominator = sigma * (1 - Phi_z + b_in * sigma * phi_z)

return numerator / denominator

This Python function beffcomputestheeffectivebiasbeff given the variance σ and the bare bias bin.
Verification Results:

Auto verification result ([’2025-02-18T05:49:40.213950+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:55:50.993221Z) Grade: A
Notes: The submitted solution correctly follows the steps outlined in the standard solution. It accurately
computes the mean halo number density, the cross-correlation, and derives the effective bias beff. The use of
Gaussian properties and the integration steps are consistent with the standard solution. The final expression
for beff is equivalent to the standard solution’s expression for b′, demonstrating a correct understanding and
application of the mathematical concepts involved. The Python function provided also correctly implements
the derived formula.

Attempt 3 (2025-01-31T13:00:52.909062Z)

Detailed Solution: Step-by-Step Solution
1. Understand the Problem - Unknown: The effective bias beff of the sampled halo field. - Given Data: -
Bare number density n̄ - Bare bias b - Underlying Gaussian matter density field δm(x) - Halo number density
field n(x) = n̄max(0,1+bδm(x)) - Conditions: - The matter density field δm(x) is Gaussian. - The variance
of δm(x) in each pixel is σ2.
2. Devise a Plan - Step 1: Express the mean halo number density ⟨n(x)⟩. - Step 2: Express the mean
matter density ⟨δm(x)⟩. - Step 3: Compute the cross-correlation ⟨n(x)δm(x)⟩. - Step 4: Use the definition
of bias to find beff.
3. Carry Out the Plan
Step 1: Mean Halo Number Density

⟨n(x)⟩ = ⟨n̄max(0,1 + bδm(x))⟩

Since δm(x) is Gaussian with mean 0 and variance σ2, we can use the properties of the Gaussian distribution:

⟨max(0,1 + bδm(x))⟩ = ∫
∞

−∞
max(0,1 + bδm)

1
√
2πσ2

e
− δ2m

2σ2 dδm

This integral can be split into two parts:

⟨max(0,1 + bδm(x))⟩ = ∫
− 1

b

−∞
0 ⋅

1
√
2πσ2

e
− δ2m

2σ2 dδm + ∫
∞

− 1
b

(1 + bδm)
1

√
2πσ2

e
− δ2m

2σ2 dδm
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The first integral is zero, and the second integral can be evaluated:

∫

∞

− 1
b

(1 + bδm)
1

√
2πσ2

e
− δ2m

2σ2 dδm =
⎛

⎝
1 + bσ

√
2

π
e
− 1

2b2σ2
⎞

⎠
(1 + erf(

1

bσ
√
2
))

Thus,

⟨n(x)⟩ = n̄
⎛

⎝
1 + bσ

√
2

π
e
− 1

2b2σ2
⎞

⎠
(1 + erf(

1

bσ
√
2
))

Step 2: Mean Matter Density
⟨δm(x)⟩ = 0

Step 3: Cross-Correlation

⟨n(x)δm(x)⟩ = ⟨n̄max(0,1 + bδm(x))δm(x)⟩

⟨max(0,1 + bδm(x))δm(x)⟩ = ∫
− 1

b

−∞
0 ⋅ δm

1
√
2πσ2

e
− δ2m

2σ2 dδm + ∫
∞

− 1
b

(1 + bδm)δm
1

√
2πσ2

e
− δ2m

2σ2 dδm

The first integral is zero, and the second integral can be evaluated:

∫

∞

− 1
b

(1 + bδm)δm
1

√
2πσ2

e
− δ2m

2σ2 dδm = σ
2
(1 +

1

bσ
√
2π

e
− 1

2b2σ2 )(1 + erf(
1

bσ
√
2
))

Thus,

⟨n(x)δm(x)⟩ = n̄σ
2
(1 +

1

bσ
√
2π

e
− 1

2b2σ2 )(1 + erf(
1

bσ
√
2
))

Step 4: Effective Bias The effective bias beff is given by:

beff =
⟨n(x)δm(x)⟩

⟨n(x)⟩⟨δm(x)⟩

Since ⟨δm(x)⟩ = 0, we use the variance σ2:

beff =
⟨n(x)δm(x)⟩

⟨n(x)⟩σ2

Substituting the expressions:

beff =
n̄σ2
(1 + 1

bσ
√

2π
e
− 1

2b2σ2 ) (1 + erf ( 1

bσ
√

2
))

n̄(1 + bσ
√

2
π
e
− 1

2b2σ2 )(1 + erf ( 1

bσ
√

2
))σ2

Simplifying:

beff =
1 + 1

bσ
√

2π
e
− 1

2b2σ2

1 + bσ
√

2
π
e
− 1

2b2σ2

Final Answer:

beff =
1 + 1

bσ
√

2π
e
− 1

2b2σ2

1 + bσ
√

2
π
e
− 1

2b2σ2

Python Code

import math

def b_eff(sigma: float , b_in: float) -> float:

numerator = 1 + (1 / (b_in * sigma * math.sqrt(2 * math.pi))) * math.exp(-1 / (2

* b_in **2 * sigma **2))

denominator = 1 + b_in * sigma * math.sqrt(2 / math.pi) * math.exp(-1 / (2 * b_in

**2 * sigma **2))

return numerator / denominator

This Python function befftakesthevarianceσ and the bare bias bin as inputs and returns the effective bias
beff.
Verification Results:
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Auto verification result ([’2025-02-18T05:49:40.215373+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:55:58.643227Z) Grade: C
Notes: The submitted solution shows a basic understanding of the problem and attempts to calculate the
effective bias beff. However, there are significant issues in the approach and calculations. The standard solution
derives the bias b′ using the correlation functions and expectations of Gaussian random variables, leading to a
final expression involving the normal cumulative distribution function Φ1 and the standard normal probability
density function ϕ1. The submitted solution instead uses an incorrect approach to calculate the mean halo
number density and cross-correlation, leading to a different final expression for beff. The use of error functions
and exponential terms in the submitted solution does not align with the standard solution’s methodology
and final result. Additionally, the Python code provided does not match the mathematical derivation in the
standard solution.

Attempt 4 (2025-01-31T13:03:07.970891Z)

Detailed Solution: Step 1: Understand the Problem
We are given a halo number density field n(x) defined as:

n(x) = n̄max(0,1 + bδm(x))

where: - n̄ is the bare number density. - b is the bare bias. - δm(x) is the underlying Gaussian matter density
field.
We need to find the effective bias beff of the sampled halo field. The effective bias is defined as the ratio of
the variance of the halo number density field to the variance of the matter density field.
Step 2: Devise a Plan
1. Calculate the mean halo number density:

⟨n(x)⟩ = n̄⟨max(0,1 + bδm(x))⟩

2. Calculate the variance of the halo number density field:

Var(n(x)) = ⟨n(x)2⟩ − ⟨n(x)⟩2

3. Calculate the variance of the matter density field:

Var(δm(x)) = ⟨δm(x)
2
⟩ − ⟨δm(x)⟩

2

4. Determine the effective bias:

beff =
Var(n(x))

Var(δm(x))

Step 3: Carry Out the Plan
Step 3.1: Calculate the mean halo number density
Since δm(x) is a Gaussian field with mean 0 and variance σ2:

⟨δm(x)⟩ = 0

⟨δm(x)
2
⟩ = σ2

The mean halo number density is:

⟨n(x)⟩ = n̄⟨max(0,1 + bδm(x))⟩

The expectation ⟨max(0,1+ bδm(x))⟩ can be calculated using the cumulative distribution function (CDF) of
the Gaussian distribution. For a standard normal variable Z:

⟨max(0,1 + bδm(x))⟩ = ∫
∞

−∞
max(0,1 + bz)

1
√
2πσ2

e
− z2

2σ2 dz
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This integral can be split into two parts:

⟨max(0,1 + bδm(x))⟩ = ∫
− 1

b

−∞
0 ⋅

1
√
2πσ2

e
− z2

2σ2 dz + ∫
∞

− 1
b

(1 + bz)
1

√
2πσ2

e
− z2

2σ2 dz

The first integral is zero, and the second integral can be evaluated as:

⟨max(0,1 + bδm(x))⟩ = ∫
∞

− 1
b

(1 + bz)
1

√
2πσ2

e
− z2

2σ2 dz

Using the properties of the Gaussian integral:

⟨max(0,1 + bδm(x))⟩ =
⎛

⎝
1 + bσ

√
2

π
e
− 1

2b2σ2
⎞

⎠
(1 −Φ(−

1

bσ
))

where Φ is the CDF of the standard normal distribution.
Step 3.2: Calculate the variance of the halo number density field
The variance of n(x) is:

Var(n(x)) = ⟨n(x)2⟩ − ⟨n(x)⟩2

First, calculate ⟨n(x)2⟩:
⟨n(x)2⟩ = n̄2

⟨max(0,1 + bδm(x))
2
⟩

The expectation ⟨max(0,1 + bδm(x))
2
⟩ can be calculated similarly:

⟨max(0,1 + bδm(x))
2
⟩ = ∫

∞

−∞
max(0,1 + bz)2

1
√
2πσ2

e
− z2

2σ2 dz

This integral can be split into two parts:

⟨max(0,1 + bδm(x))
2
⟩ = ∫

− 1
b

−∞
0 ⋅

1
√
2πσ2

e
− z2

2σ2 dz + ∫
∞

− 1
b

(1 + bz)2
1

√
2πσ2

e
− z2

2σ2 dz

The first integral is zero, and the second integral can be evaluated as:

⟨max(0,1 + bδm(x))
2
⟩ = ∫

∞

− 1
b

(1 + 2bz + b2z2)
1

√
2πσ2

e
− z2

2σ2 dz

Using the properties of the Gaussian integral:

⟨max(0,1 + bδm(x))
2
⟩ =
⎛

⎝
1 + 2bσ

√
2

π
e
− 1

2b2σ2 + b2σ2
(1 +

1

b2σ2
)
⎞

⎠
(1 −Φ(−

1

bσ
))

Step 3.3: Calculate the effective bias
The effective bias is:

beff =
Var(n(x))

Var(δm(x))

Substitute the expressions for ⟨n(x)⟩ and ⟨n(x)2⟩:

beff =
n̄2
(⟨max(0,1 + bδm(x))

2
⟩ − ⟨max(0,1 + bδm(x))⟩

2
)

σ2

Final Answer
The effective bias beff is given by:

beff =
(1 + 2bσ

√
2
π
e
− 1

2b2σ2 + b2σ2
(1 + 1

b2σ2 )) (1 −Φ (−
1
bσ
)) − (1 + bσ

√
2
π
e
− 1

2b2σ2 )
2

(1 −Φ (− 1
bσ
))

2

σ2

Python Code
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import math

from scipy.stats import norm

def b_eff(sigma: float , b_in: float) -> float:

# Calculate the CDF of the standard normal distribution

Phi = norm.cdf(-1 / (b_in * sigma))

# Calculate the terms

term1 = 1 + 2 * b_in * sigma * math.sqrt(2 / math.pi) * math.exp(-1 / (2 * b_in **

2 * sigma **2)) + b_in **2 * sigma **2 *

(1 + 1 / (b_in ** 2 * sigma ** 2))

term2 = (1 + b_in * sigma * math.sqrt(2 / math.pi) * math.exp(-1 / (2 * b_in **2 *

sigma **2)))**2

# Calculate the effective bias

b_eff = (term1 * (1 - Phi) - term2 * (1 - Phi)** 2) / sigma ** 2

return b_eff

This Python function befftakesthevarianceσ and the bare bias bin as inputs and returns the effective bias
beff.
Verification Results:

Auto verification result ([’2025-02-18T05:49:40.217210+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:56:08.374443Z) Grade: C
Notes: The submitted solution demonstrates a basic understanding of the problem by attempting to calculate
the effective bias beff using the variance of the halo number density field and the variance of the matter density
field. However, there are significant issues in the approach. The submitted solution does not correctly derive
the expression for the effective bias beff as given in the standard solution. The standard solution involves
a more detailed derivation using the correlation functions and expectations of Gaussian random variables,
leading to a specific expression for the bias b′. The submitted solution’s final expression for beff does not match
the standard solution’s expression for b′, indicating a major flaw in the approach. Additionally, the submitted
solution lacks the necessary steps to connect the real-space correlation functions to the Fourier-transformed
quantities, which is crucial in the standard solution. Overall, while the approach has some merit, it fails to
arrive at the correct final expression for the bias.

Attempt 5 (2025-01-31T13:05:46.858757Z)

Detailed Solution: Step 1: Understand the Problem
We are given a halo number density field n(x) defined as:

n(x) = n̄max(0,1 + bδm(x))

where: - n̄ is the bare number density. - b is the bare bias. - δm(x) is the underlying Gaussian matter density
field.
We need to find the effective bias beff of the sampled halo field. The effective bias is defined as the ratio of
the variance of the halo number density field to the variance of the matter density field.
Step 2: Devise a Plan
1. Calculate the mean of the halo number density field:

⟨n(x)⟩ = n̄⟨max(0,1 + bδm(x))⟩

2. Calculate the variance of the halo number density field:

Var(n(x)) = ⟨n(x)2⟩ − ⟨n(x)⟩2
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3. Calculate the variance of the matter density field:

Var(δm(x)) = ⟨δm(x)
2
⟩ − ⟨δm(x)⟩

2

4. Determine the effective bias:

beff =
Var(n(x))

Var(δm(x))

Step 3: Carry Out the Plan
Step 3.1: Calculate the Mean of the Halo Number Density Field
Since δm(x) is a Gaussian field with mean 0 and variance σ2, we have:

⟨δm(x)⟩ = 0

⟨δm(x)
2
⟩ = σ2

The mean of the halo number density field is:

⟨n(x)⟩ = n̄⟨max(0,1 + bδm(x))⟩

The expectation of the maximum function can be evaluated using the cumulative distribution function (CDF)
of the Gaussian distribution. For a standard normal variable Z with mean 0 and variance 1, the CDF is Φ(z).
For a Gaussian variable with mean 0 and variance σ2, the CDF is Φ ( z

σ
).

The mean is:

⟨max(0,1 + bδm(x))⟩ = ∫
∞

−∞
max(0,1 + bz)

1
√
2πσ2

e
− z2

2σ2 dz

This integral can be split into two parts:

⟨max(0,1 + bδm(x))⟩ = ∫
− 1

b

−∞
0 ⋅

1
√
2πσ2

e
− z2

2σ2 dz + ∫
∞

− 1
b

(1 + bz)
1

√
2πσ2

e
− z2

2σ2 dz

The first integral is zero, and the second integral can be evaluated as:

∫

∞

− 1
b

(1 + bz)
1

√
2πσ2

e
− z2

2σ2 dz = Φ(
1

bσ
) + bσϕ(

1

bσ
)

where ϕ(z) is the probability density function (PDF) of the standard normal distribution.
Thus:

⟨n(x)⟩ = n̄(Φ(
1

bσ
) + bσϕ(

1

bσ
))

Step 3.2: Calculate the Variance of the Halo Number Density Field
The second moment of the halo number density field is:

⟨n(x)2⟩ = n̄2
⟨max(0,1 + bδm(x))

2
⟩

The expectation of the square of the maximum function is:

⟨max(0,1 + bδm(x))
2
⟩ = ∫

∞

−∞
max(0,1 + bz)2

1
√
2πσ2

e
− z2

2σ2 dz

This integral can be split into two parts:

⟨max(0,1 + bδm(x))
2
⟩ = ∫

− 1
b

−∞
0 ⋅

1
√
2πσ2

e
− z2

2σ2 dz + ∫
∞

− 1
b

(1 + bz)2
1

√
2πσ2

e
− z2

2σ2 dz

The first integral is zero, and the second integral can be evaluated as:

∫

∞

− 1
b

(1 + bz)2
1

√
2πσ2

e
− z2

2σ2 dz = Φ(
1

bσ
) + 2bσϕ(

1

bσ
) + b2σ2

(1 −Φ(
1

bσ
))

Thus:

⟨n(x)2⟩ = n̄2
(Φ(

1

bσ
) + 2bσϕ(

1

bσ
) + b2σ2

(1 −Φ(
1

bσ
)))

The variance of the halo number density field is:

Var(n(x)) = ⟨n(x)2⟩ − ⟨n(x)⟩2
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Step 3.3: Calculate the Variance of the Matter Density Field
The variance of the matter density field is:

Var(δm(x)) = σ
2

Step 3.4: Determine the Effective Bias
The effective bias is:

beff =
Var(n(x))

Var(δm(x))
=
⟨n(x)2⟩ − ⟨n(x)⟩2

σ2

Substituting the expressions for ⟨n(x)⟩ and ⟨n(x)2⟩:

beff =
n̄2
(Φ ( 1

bσ
) + 2bσϕ ( 1

bσ
) + b2σ2

(1 −Φ ( 1
bσ
))) − (n̄ (Φ ( 1

bσ
) + bσϕ ( 1

bσ
)))

2

σ2

Simplifying the expression:

beff =
n̄2
(Φ ( 1

bσ
) + 2bσϕ ( 1

bσ
) + b2σ2

(1 −Φ ( 1
bσ
))) − n̄2

(Φ ( 1
bσ
) + bσϕ ( 1

bσ
))

2

σ2

beff =
n̄2
(Φ ( 1

bσ
) + 2bσϕ ( 1

bσ
) + b2σ2

(1 −Φ ( 1
bσ
)) − (Φ ( 1

bσ
) + bσϕ ( 1

bσ
))

2
)

σ2

Final Answer
The effective bias beff is given by:

beff =
n̄2
(Φ ( 1

bσ
) + 2bσϕ ( 1

bσ
) + b2σ2

(1 −Φ ( 1
bσ
)) − (Φ ( 1

bσ
) + bσϕ ( 1

bσ
))

2
)

σ2

Python Code

import numpy as np

from scipy.stats import norm

def b_eff(sigma: float , b_in: float) -> float:

# Calculate the CDF and PDF values

z = 1 / (b_in * sigma)

phi_z = norm.cdf(z)

phi_prime_z = norm.pdf(z)

# Calculate the mean and variance of the halo number density field

mean_n = phi_z + b_in * sigma * phi_prime_z

var_n = (phi_z + 2 * b_in * sigma * phi_prime_z + b_in **2 * sigma **2 * (1 - phi_z

)) - mean_n **2

# Calculate the effective bias

b_eff = var_n / sigma ** 2

return b_eff

This Python function befftakesthevarianceσ and the bare bias bin as inputs and returns the effective bias
beff.
Verification Results:

Auto verification result ([’2025-02-18T05:49:40.219292+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:56:16.452220Z) Grade: C
Notes: The submitted solution demonstrates a basic understanding of the problem by attempting to calculate
the effective bias beff using the variance of the halo number density field and the variance of the matter density
field. However, there are significant issues: 1) The approach to calculate beff differs from the standard solution,
which focuses on the correlation function and bias in Fourier space. 2) The submitted solution does not derive
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the expression for b′ as given in the standard solution. 3) The solution lacks a clear connection between the
real-space correlation function and the Fourier-space quantities, which is crucial in the standard solution. 4)
The final expression for beff is not equivalent to the standard solution’s expression for b′. Overall, while the
approach has some merit, it does not align with the standard solution’s methodology and results.
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2.2.6 Model: meta-llama/Meta-Llama-3.1-8B-Instruct

Attempt 1 (2025-01-31T19:37:36.725105Z)

Detailed Solution: Problem Solution
Step 1: Understand the Problem
We are given a sample of the underlying Gaussian matter density δm and a simulated halo number density
field n(x) = n̄max(0,1 + bδm(x)). We need to find the bias of the sampled halo field, which depends on the
bare bias b and the variance in each pixel.
Step 2: Devise a Plan
To find the bias of the sampled halo field, we can use the definition of bias in cosmology, which is given by
the ratio of the variance of the halo field to the variance of the matter density field.
Step 3: Carry Out the Plan
Let’s start by finding the variance of the halo field. We can use the fact that the variance of a function f(δm)
is given by:

σ2
n = ⟨f(δm)

2
⟩ − ⟨f(δm)⟩

2

where ⟨⋅⟩ denotes the ensemble average.
For the halo field, we have:

n(x) = n̄max(0,1 + bδm(x))

We can expand the square and use the fact that ⟨δ2m⟩ = σ
2
m and ⟨δm⟩ = 0 to get:

σ2
n = n̄

2
(⟨(1 + bδm)

2
⟩ − ⟨1 + bδm⟩

2
)

Simplifying the expression, we get:

σ2
n = n̄

2
(1 + 2b ⟨δm⟩ + b

2
⟨δ2m⟩)

Since ⟨δm⟩ = 0, we get:

σ2
n = n̄

2
(1 + b2σ2

m)

Now, we can find the bias of the halo field by taking the ratio of the variance of the halo field to the variance
of the matter density field:

beff =
σ2
n

σ2
m
=
n̄2
(1 + b2σ2

m)

σ2
m

Simplifying the expression, we get:

beff = n̄
2
+ b2n̄2

However, we can simplify this expression further by realizing that n̄2 is just a constant and can be factored
out:

beff = n̄
2
(1 + b2)

However, we are interested in the effective bias beff which is a function of the bare bias b and the variance in
each pixel σ2

m. We can rewrite the expression as:

beff =
1 + b2

1

However, we can simplify this expression further by realizing that the denominator is just 1:

beff = 1 + b
2

However, we can simplify this expression further by realizing that we can factor out the b2 term:

beff = b
2
+ 1

However, we can simplify this expression further by realizing that we can rewrite it as:
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Verification Results:

Auto verification result ([’2025-02-18T05:49:40.219340+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:56:23.469261Z) Grade: D
Notes: The submitted solution is fundamentally flawed and does not align with the standard solution. The
standard solution involves a detailed derivation using Gaussian random fields, correlation functions, and the
power spectrum to find the bias b′. The submitted solution incorrectly attempts to find the bias by calculating
the variance of the halo field and ends up with an incorrect expression for the effective bias beff. The repeated
simplification attempts do not lead to a valid or meaningful result, and the final expression does not match the
standard solution’s final answer. The approach lacks the necessary steps and understanding of the problem’s
domain-specific concepts.

Attempt 2 (2025-01-31T19:38:16.042642Z)

Detailed Solution: Step 1: Understand the Problem We are given a sample of the underlying Gaussian
matter density δm and a simulated halo number density field n(x) = n̄max(0,1 + bδm(x)). The goal is to
derive an equation for the bias of the sampled halo field, which depends on the bare bias b and the variance
in each pixel.
Step 2: Devise a Plan To derive the bias of the sampled halo field, we will use the definition of bias in the
context of cosmology. The bias is typically defined as the ratio of the variance of the halo field to the variance
of the matter density field. We will start by calculating the variance of the halo field and then use this result
to derive the bias.
Step 3: Carry Out the Plan Let’s start by calculating the variance of the halo field. We can do this by taking
the expectation value of the square of the halo field and subtracting the square of the expectation value.

σ2
n = ⟨n

2
⟩ − ⟨n⟩2

We can rewrite the halo field as:

n(x) = n̄max(0,1 + bδm(x))
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Since the maximum function is non-linear, we cannot simply take the expectation value of the square of the
halo field. Instead, we will use the fact that the maximum function can be approximated as a step function
for large values of b.

max(0,1 + bδm(x)) ≈

⎧⎪⎪
⎨
⎪⎪⎩

0 if δm(x) < −
1
b

1 + bδm(x) if δm(x) ≥ −
1
b

Using this approximation, we can rewrite the halo field as:

n(x) ≈ n̄

⎧⎪⎪
⎨
⎪⎪⎩

0 if δm(x) < −
1
b

1 + bδm(x) if δm(x) ≥ −
1
b

Now, we can calculate the variance of the halo field:

σ2
n = ⟨n

2
⟩ − ⟨n⟩2

Using the fact that the halo field is a function of the matter density field, we can rewrite the variance as:

σ2
n = ∫ ∫ (n̄

2
(1 + bδm(x))

2
)P (δm(x), δm(y))dδm(x)dδm(y)−(∫ ∫ n̄(1 + bδm(x))P (δm(x), δm(y))dδm(x)dδm(y))

2

where P (δm(x), δm(y)) is the joint probability distribution of the matter density field.
Using the fact that the matter density field is Gaussian, we can rewrite the joint probability distribution as:

P (δm(x), δm(y)) =
1

2πσ2
exp(−

(δm(x) − δm(y))
2

2σ2
)

where σ2 is the variance of the matter density field.
Substituting this expression into the variance equation, we get:

σ2
n = ∫ ∫ (n̄

2
(1 + bδm(x))

2
)

1

2πσ2
exp(−

(δm(x) − δm(y))
2

2σ2
)dδm(x)dδm(y)−(∫ ∫ n̄(1 + bδm(x))

1

2πσ2
exp(−

(δm(x) − δm(y))
2

2σ2
)dδm(x)dδm(y))

2

Evaluating the integrals, we get:

σ2
n = n̄

2
(1 + 2bσ2

+ b2σ4
)

Now, we can calculate the bias of the halo field:

beff =
σ2
n

σ2
m

Substituting the expression for σ2
n, we get:

beff =
n̄2
(1 + 2bσ2

+ b2σ4
)

σ2
m

Simplifying the expression, we get:

beff = (1 + bσ
2
)
2

Step 4: Convert the Mathematical Expression to Python Code

def b_eff(sigma: float , b_in: float) -> float:

"""

Calculate the effective bias of the halo field.

Parameters :

sigma (float): The variance of the matter density field.

b_in (float): The bare bias.

Returns:

float: The effective bias of the halo field.

"""

return (1 + b_in * sigma) ** 2
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The final answer is:

#let b_in stand for bare bias

def b_eff(sigma: float , b_in:float) -> float:

"""

Calculate the effective bias of the halo field.

Parameters :

sigma (float): The variance of the matter density field.

b_in (float): The bare bias.

Returns:

float: The effective bias of the halo field.

"""

return (1 + b_in * sigma) ** 2

Verification Results:

Auto verification result ([’2025-02-18T05:49:40.220867+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:56:29.688152Z) Grade: D
Notes: The submitted solution fundamentally misunderstands the problem. The standard solution derives
the bias b′ using a detailed statistical approach involving Gaussian random fields, correlation functions, and
expectations. It arrives at a complex expression for b′ involving the normal cumulative distribution function
and the standard normal probability density function. In contrast, the submitted solution incorrectly simplifies
the problem by approximating the maximum function and calculating the variance of the halo field using a
basic Gaussian distribution assumption. The final expression for the effective bias beff = (1+bσ

2
)
2 is incorrect

and does not match the standard solution’s result. The approach lacks the necessary statistical rigor and
understanding of the domain-specific concepts required to solve the problem correctly.

Attempt 3 (2025-01-31T19:41:55.844216Z)

Detailed Solution: Step 1: Understand the Problem The problem involves finding the bias of a sampled
halo field, which is a biased tracer of the underlying Gaussian matter density δm. The halo number density
field is simulated using the equation n(x) = n̄max(0,1 + bδm(x)), where n̄ is the bare number density and b
is the bare bias.
Step 2: Devise a Plan To find the bias of the sampled halo field, we need to derive an equation that depends
on the bare bias and the variance in each pixel. We can start by expanding the equation for the halo number
density field and then use the properties of the Gaussian matter density δm to simplify the expression.
Step 3: Carry Out the Plan We start by expanding the equation for the halo number density field:

n(x) = n̄max(0,1 + bδm(x))

Using the definition of the max function, we can rewrite this as:
n(x) = n̄max(0,1 + bδm(x)) = n̄ beginarrayll1 + bδm(x)if 1 + bδm(x) ≥ 00otherwise
Since we are interested in the bias of the sampled halo field, we can focus on the case where 1 + bδm(x) ≥ 0.
In this case, we can simplify the expression to:

n(x) = n̄(1 + bδm(x))

Now, we can use the properties of the Gaussian matter density δm to simplify the expression. Specifically, we
can use the fact that the variance of δm is given by σ2. We can then write:

n(x) = n̄(1 + bδm(x)) = n̄(1 + bδm(x)) = n̄ + bn̄δm(x)

The bias of the sampled halo field is then given by the coefficient of δm(x), which is bn̄.
However, we are interested in the effective bias, which depends on the bare bias and the variance in each
pixel. To derive an expression for the effective bias, we can use the fact that the variance of the halo number

80



density field is given by:

σ2
n = n̄

2
(b2σ2

+ 1)

where σ2 is the variance of the matter density field. We can then use this expression to derive an equation
for the effective bias:

beff =
σ2
n − n̄

2

n̄2σ2

Substituting the expression for σ2
n, we get:

beff =
n̄2
(b2σ2

+ 1) − n̄2

n̄2σ2
=
n̄2b2σ2

n̄2σ2
= b2

However, this is not the correct expression for the effective bias. To derive the correct expression, we need to
use the fact that the variance of the halo number density field is given by:

σ2
n = n̄

2
(b2σ2

+ 1)

We can then use this expression to derive an equation for the effective bias:

beff =
σ2
n − n̄

2

n̄2σ2

Substituting the expression for σ2
n, we get:

beff =
n̄2
(b2σ2

+ 1) − n̄2

n̄2σ2
=
n̄2b2σ2

n̄2σ2
+

1

σ2
= b2 +

1

σ2

However, this is still not the correct expression for the effective bias. To derive the correct expression, we
need to use the fact that the variance of the halo number density field is given by:

σ2
n = n̄

2
(b2σ2

+ 1)

We can then use this expression to derive an equation for the effective bias:

beff =
σ2
n − n̄

2

n̄2σ2

Substituting the expression for σ2
n, we get:

beff =
n̄2
(b2σ2

+ 1) − n̄2

n̄2σ2
=
n̄2b2σ2

n̄2σ2
+

1

σ2
−

1

σ2
= b2 +

1

σ2
−

1

σ2

However, this is still not the correct expression for the effective bias. To derive the correct expression, we
need to use the fact that the variance of the halo number density field is given by:

σ2
n = n̄

2
(b2σ2

+ 1)

We can then use this expression to derive an equation for the effective bias:

beff =
σ2
n − n̄

2

n̄2σ2

Substituting the expression for σ2
n, we get:

beff =
n̄2
(b2σ2

+ 1) − n̄2

n̄2σ2
=
n̄2b2σ2

n̄2σ2
+
n̄2
− n̄2

n̄2σ2
= b2 +

1

σ2
−

1

σ2

However, this is still not the correct expression for the effective bias. To derive the correct expression, we
need to use the fact that the variance of the halo number density field is given by:

σ2
n = n̄

2
(b2σ2

+ 1)

We can then use this expression to derive an equation for the effective bias:

beff =
σ2
n − n̄

2

n̄2σ2
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Substituting the expression for σ2
n, we get:

beff =
n̄2
(b2σ2

+ 1) − n̄2

n̄2σ2
=
n̄2b2σ2

n̄2σ2
+
n̄2
− n̄2

n̄2σ2
= b2 +

1

σ2
−

1

σ2

However, this is still not the correct expression for the effective bias. To derive the correct expression, we
need to use the fact that the variance of the halo number density field is given by:

σ2
n = n̄

2
(b2σ2

+ 1)

We can then use this expression to derive an equation for the effective bias:

beff =
σ2
n − n̄

2

n̄2σ2

Substituting the expression for σ2
n, we get:

beff =
n̄2
(b2σ2

+ 1) − n̄2

n̄2σ2
=
n̄2b2σ2

n̄2σ2
+
n̄2
− n̄2

n̄2σ2
= b2 +

1

σ2
−

1

σ2

However, this is still not the correct expression for the effective bias. To derive the correct expression, we
need to use the fact that the variance of the halo number density field is given by:

σ2
n = n̄

2
(b2σ2

+ 1)

We can then use this expression to derive an equation for the effective bias:

beff =
σ2
n − n̄

2

n̄2σ2

Substituting the expression for σ2
n, we get:

beff =
n̄2
(b2σ2

+ 1) − n̄2

n̄2σ2
=
n̄2b2σ2

n̄2σ2
+
n̄2
− n̄2

n̄2σ2
= b2 +

1

σ2
−

1

σ2

However, this is still not the correct expression for the effective bias. To derive the correct expression, we
need to use the fact that the variance of the halo number density field is given by:

σ2
n = n̄

2
(b2σ2

+ 1)

We can then use this expression to derive an equation for the effective bias:

beff =
σ2
n − n̄

2

n̄2σ2

Substituting the expression for σ2
n, we get:

beff =
n̄2
(b2σ2

+ 1) − n̄2

n̄2σ2
=
n̄2b2σ2

n̄2σ2
+
n̄2
− n̄2

n̄2σ2
= b2 +

1

σ2
−

1

σ2

However, this is still not the correct expression for the effective bias. To derive the correct expression, we
need to use the fact that the variance of the halo number density field is given by:

σ2
n = n̄

2
(b2σ2

+ 1)

We can then use this expression to derive an equation for the effective bias:

beff =
σ2
n − n̄

2

n̄2σ2

Substituting the expression for σ2
n, we get:

beff =
n̄2
(b2σ2

+ 1) − n̄2

n̄2σ2
=
n̄2b2σ2

n̄2σ2
+
n̄2
− n̄2

n̄2σ2
= b2 +

1

σ2
−

1

σ2

However, this is still not the correct expression for the effective bias. To derive the correct expression, we
need to use the fact that the variance of the halo number density field is given by:

σ2
n = n̄

2
(b2σ2

+ 1)
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We can then use this expression to derive an equation for the effective bias:

beff =
σ2
n − n̄

2

n̄2σ2

Substituting the expression for σ2
n, we get:

beff =
n̄2
(b2σ2

+ 1) − n̄2

n̄2σ2
=
n̄2b2σ2

n̄2σ2
+
n̄2
− n̄2

n̄2σ2
= b2 +

1

σ2
−

1

σ2

However, this is still not the correct expression for the effective bias. To derive the correct expression, we
need to use the fact that the variance of the halo number density field is given by:

σ2
n = n̄

2
(b2σ2

+ 1)

We can then use this expression to derive an equation for the effective bias:

beff =
σ2
n − n̄

2

n̄2σ2

Substituting the expression for σ2
n, we get:

beff =
n̄2
(b2σ2

+ 1) − n̄2

n̄2σ2
=
n̄2b2σ2

n̄2σ2
+
n̄2
− n̄2

n̄2σ2
= b2 +

1

σ2
−

1

σ2

However, this is still not the correct expression for the effective bias. To derive the correct expression, we
need to use the fact that the variance of the halo number density field is given by:

σ2
n = n̄

2
(b2σ2

+ 1)

We can then use this expression to derive an equation for the effective bias:

beff =
σ2
n − n̄

2

n̄2σ2

Substituting the expression for σ2
n, we get:

beff =
n̄2
(b2σ2

+ 1) − n̄2

n̄2σ2
=
n̄2b2σ2

n̄2σ2
+
n̄2
− n̄2

n̄2σ2
= b2 +

1

σ2
−

1

σ2

However, this is still not the correct expression for the effective bias. To derive the correct expression, we
need to use the fact that the variance of the halo number density field is given by:

σ2
n = n̄

2
(b2σ2

+ 1)

We can then use this expression to derive an equation for the effective bias:

beff =
σ2
n − n̄

2

n̄2σ2

Substituting the expression for σ2
n, we get:

beff =
n̄2
(b2σ2

+ 1) − n̄2

n̄2σ2
=
n̄2b2σ2

n̄2σ2
+
n̄2
− n̄2

n̄2σ2
= b2 +

1

σ2
−

1

σ2

However, this is still not the correct expression for the effective bias. To derive the correct expression, we
need to use the fact that the variance of the halo number density field is given by:

σ2
n = n̄

2
(b2σ2

+ 1)

We can then use this expression to derive an equation for the effective bias:

beff =
σ2
n − n̄

2

n̄2σ2

Substituting the expression for σ2
n, we get:

beff =
n̄2
(b2σ2

+ 1) − n̄2

n̄2σ2
=
n̄2b2σ2

n̄2σ2
+
n̄2
− n̄2

n̄2σ2
= b2 +

1

σ2
−

1

σ2
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However, this is still not the correct expression for the effective bias. To derive the correct expression, we
need to use the fact that the variance of the halo number density field is given by:

σ2
n = n̄

2
(b2σ2

+ 1)

We can then use this expression to derive an equation for the effective bias:

beff =
σ2
n − n̄

2

n̄2σ2

Substituting the expression for σ2
n, we get:

beff =
n̄2
(b2σ2

+ 1) − n̄2

n̄2σ2
=
n̄2b2σ2

n̄2σ2
+
n̄2
− n̄2

n̄2σ2
= b2 +

1

σ2
−

1

σ2

However, this is still not the correct expression for the effective bias. To derive the correct expression, we
need to use the fact that the variance of the halo number density field is given by:

σ2
n = n̄

2
(b2σ2

+ 1)

We can then use this expression to derive an equation for the effective bias:

beff =
σ2
n − n̄

2

n̄2σ2

Substituting the expression for σ2
n, we get:

beff =
n̄2
(b2σ2

+ 1) − n̄2

n̄2σ2
=
n̄2b2σ2

n̄2σ2
+
n̄2
− n̄2

n̄2σ2
= b2 +

1

σ2
−

1

σ2

However, this is still not the correct expression for the effective bias. To derive the correct expression, we
need to use the fact that the variance of the halo number density field is given by:

σ2
n = n̄

2
(b2σ2

+ 1)

We can then use this expression to derive an equation for the effective bias:

beff =
σ2
n − n̄

2

n̄2σ2

Substituting the expression for σ2
n, we get:

beff =
n̄2
(b2σ2

+ 1) − n̄2

n̄2σ2
=
n̄2b2σ2

n̄2σ2
+
n̄2
− n̄2

n̄2σ2
= b2 +

1

σ2
−

1

σ2

However, this is still not the correct expression for the effective bias. To derive the correct expression, we
need to use the fact that the variance of the halo number density field is given by:

σ2
n = n̄

2
(b2σ2

+ 1)

We can then use this expression to derive an equation for the effective bias:

beff =
σ2
n − n̄

2

n̄2σ2

Substituting the expression for σ2
n, we get:

beff =
n̄2
(b2σ2

+ 1) − n̄2

n̄2σ2
=
n̄2b2σ2

n̄2σ2
+
n̄2
− n̄2

n̄2σ2
= b2 +

1

σ2
−

1

σ2

However, this is still not the correct expression for the effective bias. To derive the correct expression, we
need to use the fact that the variance of the halo number density field is given by:

σ2
n = n̄

2
(b2σ2

+ 1)

We can then use this expression to derive an equation for the effective bias:

beff =
σ2
n − n̄

2

n̄2σ2
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Substituting the expression for σ2
n, we get:

beff =
n̄2
(b2σ2

+ 1) − n̄2

n̄2σ2
=
n̄2b2σ2

n̄2σ2
+
n̄2
− n̄2

n̄2σ2
= b2 +

1

σ2
−

1

σ2

However, this is still not the correct expression for the effective bias. To derive the correct expression, we
need to use the fact that the variance of the halo number density field is given by:

σ2
n = n̄

2
(b2σ2

+ 1)

We can then use this expression to derive an equation for the effective bias:

beff =
σ2
n − n̄

2

n̄2σ2

Substituting the expression for σ2
n, we get:

beff =
n̄2
(b2σ2

+ 1) − n̄2

n̄2σ2
=
n̄2b2σ2

n̄2σ2
+
n̄2
− n̄2

n̄2σ2
= b2 +

1

σ2
−

1

σ2

However, this is still not the correct expression for the effective bias. To derive the correct expression, we
need to use the fact that the variance of the halo number density field is given by:

σ2
n = n̄

2
(b2σ2

+ 1)

We can then use this expression to derive an equation for the effective bias:

beff =
σ2
n − n̄

2

n̄2σ2

Substituting the expression for σ2
n, we get:

beff =
n̄2
(b2σ2

+ 1) − n̄2

n̄2σ2
=
n̄2b2σ2

n̄2σ2
+
n̄2
− n̄2

n̄2σ2
= b2 +

1

σ2
−

1

σ2

However, this is still not the correct expression for the effective bias. To derive the correct expression, we
need to use the fact that the variance of the halo number density field is given by:

σ2
n = n̄

2
(b2σ2

+ 1)

We can then use this expression to derive an equation for the effective bias:

beff =
σ2
n − n̄

2

n̄2σ2

Substituting the expression for σ2
n, we get:

beff =
n̄2
(b2σ2

+ 1) − n̄2

n̄2σ2
=
n̄2b2σ2

n̄2σ2
+
n̄2
− n̄2

n̄2σ2
= b2 +

1

σ2
−

1

σ2

However, this is still not the correct expression for the effective bias. To derive the correct expression, we
need to use the fact that the variance of the halo number density field is given by:

σ2
n = n̄

2
(b2σ2

+ 1)

We can then use this expression to derive an equation for the effective bias:

beff =
σ2
n − n̄

2

n̄2σ2

Substituting the expression for σ2
n, we get:

beff =
n̄2
(b2σ2

+ 1) − n̄2

n̄2σ2
=
n̄2b2σ2

n̄2σ2
+
n̄2
− n̄2

n̄2σ2
= b2 +

1

σ2
−

1

σ2

However, this is still not the correct expression for the effective bias. To derive the correct expression, we
need to use the fact that the variance of the halo number density field is given by:

σ2
n = n̄

2
(b2σ2

+ 1)
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We can then use this expression to derive an equation for the effective bias:

beff =
σ2
n − n̄

2

n̄2σ2

Substituting the expression for σ2
n, we get:

beff =
n̄2
(b2σ2

+ 1) − n̄2

n̄2σ2
=
n̄2b2σ2

n̄2σ2
+
n̄2
− n̄2

n̄2σ2
= b2 +

1

σ2
−

1

σ2

However, this is still not the correct expression for the effective bias. To derive the correct expression, we
need to use the fact that the variance of the halo number density field is given by:

σ2
n = n̄

2
(b2σ2

+ 1)

We can then use this expression to derive an equation for the effective bias:

beff =
σ2
n − n̄

2

n̄2σ2

Substituting the expression for σ2
n, we get:

beff =
n̄2
(b2σ2

+ 1) − n̄2

n̄2σ2
=
n̄2b2σ2

n̄2σ2
+
n̄2
− n̄2

n̄2σ2
= b2 +

1

σ2
−

1

σ2

However, this is still not the correct expression for the effective bias. To derive the correct expression, we
need to use the fact that the variance of the halo number density field is given by:

σ2
n = n̄

2
(b2σ2

+ 1)

We can then use this expression to derive an equation for the effective bias:

beff =
σ2
n − n̄

2

n̄2σ2

Substituting the expression for σ2
n, we get:

beff =
n̄2
(b2σ2

+ 1) − n̄2

n̄2σ2
=
n̄2b2σ2

n̄2σ2
+
n̄2
− n̄2

n̄2σ2
= b2 +

1

σ2
−

1

σ2

However, this is still not the correct expression for the effective bias. To derive the correct expression, we
need to use the fact that the variance of the halo number density field is given by:

σ2
n = n̄

2
(b2σ2

+ 1)

We can then use this expression to derive an equation for the effective bias:

beff =
σ2
n − n̄

2

n̄2σ2

Substituting the expression for σ2
n, we get:

beff =
n̄2
(b2σ2

+ 1) − n̄2

n̄2σ2
=
n̄2b2σ2

n̄2σ2
+
n̄2
− n̄2

n̄2σ2
= b2 +

1

σ2
−

1

σ2

However, this is still not the correct expression for the effective bias. To derive the correct expression, we
need to use the fact that the variance of the halo number density field is given by:

σ2
n = n̄

2
(b2σ2

+ 1)

We can then use this expression to derive an equation for the effective bias:

beff =
σ2
n − n̄

2

n̄2σ2

Substituting the expression for σ2
n, we get:

beff =
n̄2
(b2σ2

+ 1) − n̄2

n̄2σ2
=
n̄2b2σ2

n̄2σ2
+
n̄2
− n̄2

n̄2σ2
= b2 +

1

σ2
−

1

σ2
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However, this is still not the correct expression for the effective bias. To derive the correct expression, we
need to use the fact that the variance of the halo number density field is given by:

σ2
n = n̄

2
(b2σ2

+ 1)

We can then use this expression to derive an equation for the effective bias:

beff =
σ2
n − n̄

2

n̄2σ2

Substituting the expression for σ2
n, we get:

beff =
n̄2
(b2σ2

+ 1) − n̄2

n̄2σ2
=
n̄2b2σ2

n̄2σ2
+
n̄2
− n̄2

n̄2σ2
= b2 +

1

σ2
−

1

σ2

However, this is still not the correct expression for the effective bias. To derive the correct expression, we
need to use the fact that the variance of the halo number density field is given by:

σ2
n = n̄

2
(b2σ2

+ 1)

We can then use this expression to derive an equation for the effective bias:
beff =

σ
n2

Verification Results:

Auto verification result ([’2025-02-18T05:49:40.220905+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:56:37.692690Z) Grade: D
Notes: The submitted solution repeatedly attempts to derive an expression for the effective bias beff but fails
to arrive at a correct or meaningful result. The solution incorrectly simplifies the variance of the halo number
density field and does not connect to the correct expression for the bias b′ as given in the standard solution.
The repeated derivation of beff = b2 + 1

σ2 −
1
σ2 is incorrect and does not match the standard solution’s final

expression for b′. The approach lacks the necessary steps and understanding of the problem’s requirements,
such as the use of the normal cumulative distribution function Φ1 and the standard normal probability density
function ϕ1 in the context of the problem.

Attempt 4 (2025-01-31T19:45:36.827522Z)

Detailed Solution: To solve this problem, we will follow the steps outlined in the problem-solving approach.
Step 1: Understand the Problem We are given a sample of the underlying Gaussian matter density δm and
a simulated halo number density field n(x) = n̄max(0,1 + bδm(x)). We need to find the bias of the sampled
halo field, which depends on the bare bias b and the variance in each pixel.
Step 2: Devise a Plan To find the bias of the sampled halo field, we will use the definition of bias in cosmology,
which is given by the ratio of the variance of the halo field to the variance of the matter density field.
Step 3: Carry Out the Plan We start by finding the variance of the halo field. We can do this by taking the
expectation value of the square of the halo field:

σ2
n = ⟨n

2
⟩ − ⟨n⟩2

= ⟨n̄2max(0,1 + bδm)
2
⟩ − ⟨n̄max(0,1 + bδm)⟩

2

Using the fact that δm is a Gaussian random field, we can simplify the above expression:

σ2
n = n̄

2
(⟨max(0,1 + bδm)

2
⟩ − ⟨max(0,1 + bδm)⟩

2
)

= n̄2
(⟨(1 + bδm)

2
⟩ − ⟨(1 + bδm)⟩

2
)

= n̄2
((1 + b2σ2

m + 2bµm) − (1 + 2bµm + b
2σ2

m))

= n̄2b2σ2
m
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where µm = ⟨δm⟩ and σ2
m = ⟨(δm − µm)

2
⟩.

Step 4: Derive the Bias Equation The bias of the sampled halo field is given by the ratio of the variance of
the halo field to the variance of the matter density field:

beff =
σ2
n

σ2
m

=
n̄2b2σ2

m

σ2
m

= n̄2b2

However, we are interested in the effective bias beff in terms of the bare bias b and the variance in each pixel
σ2
m. We can rewrite the above equation as:

beff =
n̄2b2σ2

m

σ2
m

= n̄2b2
σ2
m

σ2
m

= b2 (
n̄2σ2

m

σ2
m
)

= b2 (n̄2
)

However, this is not the correct expression for beff. We need to use the fact that the variance of the halo field
is given by σ2

n = n̄
2b2σ2

m.
Step 5: Derive the Correct Bias Equation We can rewrite the above equation as:

σ2
n = n̄

2b2σ2
m

σ2
n

σ2
m
= n̄2b2

σ2
n

σ2
m
= b2 (n̄2

)

However, we are interested in the effective bias beff in terms of the bare bias b and the variance in each pixel
σ2
m. We can rewrite the above equation as:

beff =
σ2
n

σ2
m

= b2 (n̄2
)

= b2 (
σ2
n

σ2
m
)

= b2 (
σ2
n

σ2
m
)

However, this is still not the correct expression for beff. We need to use the fact that the variance of the halo
field is given by σ2

n = n̄
2b2σ2

m.
Step 6: Derive the Correct Bias Equation We can rewrite the above equation as:

σ2
n = n̄

2b2σ2
m

σ2
n

σ2
m
= n̄2b2

σ2
n

σ2
m
= b2 (n̄2

)

88



However, we are interested in the effective bias beff in terms of the bare bias b and the variance in each pixel
σ2
m. We can rewrite the above equation as:
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beff =
σ2
n

σ2
m

= b2 (
σ2
n

σ2
m
)

= b2 (
n̄2b2σ2

m

σ2
m
)

= b2 (n̄2b2)

= b2 (n̄2
) b2

= b2 (
σ2
n

σ2
m
)

= b2 (
n̄2b2σ2

m

σ2
m
)

= b2 (n̄2b2)

= b2 (n̄2
) b2

= b2 (
σ2
n

σ2
m
)

= b2 (
n̄2b2σ2

m

σ2
m
)

= b2 (n̄2b2)

= b2 (n̄2
) b2

= b2 (
σ2
n

σ2
m
)

= b2 (
n̄2b2σ2

m

σ2
m
)

= b2 (n̄2b2)

= b2 (n̄2
) b2

= b2 (
σ2
n

σ2
m
)

= b2 (
n̄2b2σ2

m

σ2
m
)

= b2 (n̄2b2)

= b2 (n̄2
) b2

= b2 (
σ2
n

σ2
m
)

= b2 (
n̄2b2σ2

m

σ2
m
)

= b2 (n̄2b2)

= b2 (n̄2
) b2

= b2 (
σ2
n

σ2
m
)

= b2 (
n̄2b2σ2

m

σ2
m
)

= b2 (n̄2b2)

= b2 (n̄2
) b2

= b2 (
σ2
n

σ2
m
)

= b2 (
n̄2b2σ2

m

σ2
m
)

= b2 (n̄2b2)

= b2 (n̄2
) b2

= b2 (
σ2
n

σ2
m
)

= b2 (
n̄2b2σ2

m

σ2
m
)

= b2 (n̄2b2)

= b2 (n̄2
) b2

= b2 (
σ2
n

σ2
m
)

= b2 (
n̄2b2σ2

m

σ2
m
)
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Verification Results:

Auto verification result ([’2025-02-18T05:49:40.220938+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:56:44.733037Z) Grade: D
Notes: The submitted solution is fundamentally flawed and does not match the standard solution. The
standard solution derives the bias expression using the correlation functions and Gaussian random fields,
leading to a specific expression for the bias b′. The submitted solution incorrectly attempts to derive the
bias by using the variance of the halo field and matter density field, but it repeatedly makes errors in the
algebraic manipulation and fails to reach a coherent or correct final expression. The approach does not align
with the standard solution’s method, and the final expression for the bias is incorrect and not equivalent to
the standard solution’s result.

Attempt 5 (2025-01-31T19:49:17.567374Z)

Detailed Solution: Step 1: Understand the Problem We are given a sample of the underlying Gaussian
matter density δm and a simulated halo number density field n(x) = n̄max(0,1 + bδm(x)). Our goal is to
derive an equation for the bias of the sampled halo field, which depends on the bare bias b and the variance
in each pixel.
Step 2: Devise a Plan To find the bias of the sampled halo field, we can use the definition of bias in the
context of cosmology. The bias is typically defined as the ratio of the variance of the halo field to the variance
of the underlying matter density field. We can start by finding the variance of the halo field and then use it
to derive the bias.
Step 3: Carry Out the Plan Let’s start by finding the variance of the halo field. We can use the given
expression for the halo number density field:

n(x) = n̄max(0,1 + bδm(x))

We can rewrite this expression as:

n(x) = n̄max(0,1 + bδm(x)) = n̄ + n̄bδm(x)

where we have used the fact that max(0,1 + bδm(x)) = 1 + bδm(x) when bδm(x) > 0.
Now, we can find the variance of the halo field by taking the expectation of the square of the difference
between the halo field and the mean halo field:

σ2
n = ⟨n(x)

2
⟩ − ⟨n(x)⟩2

Using the expression for the halo number density field, we get:

σ2
n = ⟨(n̄ + n̄bδm(x))

2
⟩ − ⟨n̄ + n̄bδm(x)⟩

2

Expanding the square and using the fact that ⟨δm(x)⟩ = 0, we get:

σ2
n = n̄

2
+ 2n̄2b⟨δm(x)⟩ + n̄

2b2⟨δm(x)
2
⟩ − n̄2

− n̄2b2⟨δm(x)
2
⟩

Simplifying the expression, we get:

σ2
n = n̄

2b2⟨δm(x)
2
⟩

Now, we can use this expression to find the bias of the sampled halo field. The bias is typically defined as
the ratio of the variance of the halo field to the variance of the underlying matter density field:

beff =
σ2
n

σ2
m

Using the expression for the variance of the halo field, we get:
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beff =
n̄2b2⟨δm(x)

2
⟩

σ2
m

Simplifying the expression, we get:

beff = b
2 ⟨δm(x)

2
⟩

σ2
m

Since ⟨δm(x)
2
⟩ = σ2

m, we get:

beff = b
2

However, this is not the correct expression for the bias. We need to take into account the fact that the
variance of the halo field is not equal to the variance of the underlying matter density field.
To find the correct expression for the bias, we need to use the fact that the variance of the halo field is equal
to the variance of the underlying matter density field plus the variance of the bias term:

σ2
n = σ

2
m + n̄

2b2σ2
m

Using this expression, we can find the bias of the sampled halo field:

beff =
σ2
n

σ2
m
= 1 + b2

However, this is still not the correct expression for the bias. We need to take into account the fact that the
variance of the halo field is not equal to the variance of the underlying matter density field.
To find the correct expression for the bias, we need to use the fact that the variance of the halo field is equal
to the variance of the underlying matter density field plus the variance of the bias term plus the covariance
between the bias term and the underlying matter density field:

σ2
n = σ

2
m + n̄

2b2σ2
m + 2n̄

2bσ2
m

Using this expression, we can find the bias of the sampled halo field:

beff =
σ2
n

σ2
m
= 1 + b2 + 2b

σ2
m

σ2
m

Simplifying the expression, we get:

beff = 1 + b
2
+ 2b

However, this is still not the correct expression for the bias. We need to take into account the fact that the
variance of the halo field is not equal to the variance of the underlying matter density field.
To find the correct expression for the bias, we need to use the fact that the variance of the halo field is equal
to the variance of the underlying matter density field plus the variance of the bias term plus the covariance
between the bias term and the underlying matter density field:

σ2
n = σ

2
m + n̄

2b2σ2
m + 2n̄

2bσ2
m + n̄

2b2σ2
m

Using this expression, we can find the bias of the sampled halo field:

beff =
σ2
n

σ2
m
= 1 + 2b + b2

However, this is still not the correct expression for the bias. We need to take into account the fact that the
variance of the halo field is not equal to the variance of the underlying matter density field.
To find the correct expression for the bias, we need to use the fact that the variance of the halo field is equal
to the variance of the underlying matter density field plus the variance of the bias term plus the covariance
between the bias term and the underlying matter density field:

σ2
n = σ

2
m + n̄

2b2σ2
m + 2n̄

2bσ2
m + n̄

2b2σ2
m + n̄

2b2σ2
m

Using this expression, we can find the bias of the sampled halo field:

beff =
σ2
n

σ2
m
= 1 + 2b + 2b2
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However, this is still not the correct expression for the bias. We need to take into account the fact that the
variance of the halo field is not equal to the variance of the underlying matter density field.
To find the correct expression for the bias, we need to use the fact that the variance of the halo field is equal
to the variance of the underlying matter density field plus the variance of the bias term plus the covariance
between the bias term and the underlying matter density field:

σ2
n = σ

2
m + n̄

2b2σ2
m + 2n̄

2bσ2
m + n̄

2b2σ2
m + n̄

2b2σ2
m + n̄

2b2σ2
m

Using this expression, we can find the bias of the sampled halo field:

beff =
σ2
n

σ2
m
= 1 + 2b + 3b2

However, this is still not the correct expression for the bias. We need to take into account the fact that the
variance of the halo field is not equal to the variance of the underlying matter density field.
To find the correct expression for the bias, we need to use the fact that the variance of the halo field is equal
to the variance of the underlying matter density field plus the variance of the bias term plus the covariance
between the bias term and the underlying matter density field:

σ2
n = σ

2
m + n̄

2b2σ2
m + 2n̄

2bσ2
m + n̄

2b2σ2
m + n̄

2b2σ2
m + n̄

2b2σ2
m + n̄

2b2σ2
m

Using this expression, we can find the bias of the sampled halo field:

beff =
σ2
n

σ2
m
= 1 + 2b + 4b2

However, this is still not the correct expression for the bias. We need to take into account the fact that the
variance of the halo field is not equal to the variance of the underlying matter density field.
To find the correct expression for the bias, we need to use the fact that the variance of the halo field is equal
to the variance of the underlying matter density field plus the variance of the bias term plus the covariance
between the bias term and the underlying matter density field:

σ2
n = σ

2
m + n̄

2b2σ2
m + 2n̄

2bσ2
m + n̄

2b2σ2
m + n̄

2b2σ2
m + n̄

2b2σ2
m + n̄

2b2σ2
m + n̄

2b2σ2
m

Using this expression, we can find the bias of the sampled halo field:

beff =
σ2
n

σ2
m
= 1 + 2b + 5b2

However, this is still not the correct expression for the bias. We need to take into account the fact that the
variance of the halo field is not equal to the variance of the underlying matter density field.
To find the correct expression for the bias, we need to use the fact that the variance of the halo field is equal
to the variance of the underlying matter density field plus the variance of the bias term plus the covariance
between the bias term and the underlying matter density field:

σ2
n = σ

2
m + n̄

2b2σ2
m + 2n̄

2bσ2
m + n̄

2b2σ2
m + n̄

2b2σ2
m + n̄

2b2σ2
m + n̄

2b2σ2
m + n̄

2b2σ2
m + n̄

2b2σ2
m

Using this expression, we can find the bias of the sampled halo field:

beff =
σ2
n

σ2
m
= 1 + 2b + 6b2

However, this is still not the correct expression for the bias. We need to take into account the fact that the
variance of the halo field is not equal to the variance of the underlying matter density field.
To find the correct expression for the bias, we need to use the fact that the variance of the halo field is equal
to the variance of the underlying matter density field plus the variance of the bias term plus the covariance
between the bias term and the underlying matter density field:

σ2
n = σ

2
m + n̄

2b2σ2
m + 2n̄

2bσ2
m + n̄

2b2σ2
m + n̄

2b2σ2
m + n̄

2b2σ2
m + n̄

2b2σ2
m + n̄

2b2σ2
m + n̄

2b2σ2
m + n̄

2b2σ2
m

Using this expression, we can find the bias of the sampled halo field:

beff =
σ2
n

σ2
m
= 1 + 2b + 7b2
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However, this is still not the correct expression for the bias. We need to take into account the fact that the
variance of the halo field is not equal to the variance of the underlying matter density field.
To find the correct expression for the bias, we need to use the fact that the variance of the halo field is equal
to the variance of the underlying matter density field plus the variance of the bias term plus the covariance
between the bias term and the underlying matter density field:

σ2
n = σ

2
m + n̄

2b2σ2
m + 2n̄

2bσ2
m + n̄

2b2σ2
m + n̄

2b2σ2
m + n̄

2b2σ2
m + n̄

2b2σ2
m + n̄

2b2σ2
m + n̄

2b2σ2
m + n̄

2b2σ2
m + n̄

2b2σ2
m

Using this expression, we can find the bias of the sampled halo field:

beff =
σ2
n

σ2
m
= 1 + 2b + 8b2

However, this is still not the correct expression for the bias. We need to take into account the fact that the
variance of the halo field is not equal to the variance of the underlying matter density field.
To find the correct expression for the bias, we need to use the fact that the variance of the halo field is equal
to the variance of the underlying matter density field plus the variance of the bias term plus the covariance
between the bias term and the underlying matter density field:

σ2
n = σ

2
m+n̄

2b2σ2
m+2n̄

2bσ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m

Using this expression, we can find the bias of the sampled halo field:

beff =
σ2
n

σ2
m
= 1 + 2b + 9b2

However, this is still not the correct expression for the bias. We need to take into account the fact that the
variance of the halo field is not equal to the variance of the underlying matter density field.
To find the correct expression for the bias, we need to use the fact that the variance of the halo field is equal
to the variance of the underlying matter density field plus the variance of the bias term plus the covariance
between the bias term and the underlying matter density field:

σ2
n = σ

2
m+n̄

2b2σ2
m+2n̄

2bσ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m

Using this expression, we can find the bias of the sampled halo field:

beff =
σ2
n

σ2
m
= 1 + 2b + 10b2

However, this is still not the correct expression for the bias. We need to take into account the fact that the
variance of the halo field is not equal to the variance of the underlying matter density field.
To find the correct expression for the bias, we need to use the fact that the variance of the halo field is equal
to the variance of the underlying matter density field plus the variance of the bias term plus the covariance
between the bias term and the underlying matter density field:

σ2
n = σ

2
m+n̄

2b2σ2
m+2n̄

2bσ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m

Using this expression, we can find the bias of the sampled halo field:

beff =
σ2
n

σ2
m
= 1 + 2b + 11b2

However, this is still not the correct expression for the bias. We need to take into account the fact that the
variance of the halo field is not equal to the variance of the underlying matter density field.
To find the correct expression for the bias, we need to use the fact that the variance of the halo field is equal
to the variance of the underlying matter density field plus the variance of the bias term plus the covariance
between the bias term and the underlying matter density field:

σ2
n = σ

2
m+n̄

2b2σ2
m+2n̄

2bσ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m
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Using this expression, we can find the bias of the sampled halo field:

beff =
σ2
n

σ2
m
= 1 + 2b + 12b2

However, this is still not the correct expression for the bias. We need to take into account the fact that the
variance of the halo field is not equal to the variance of the underlying matter density field.
To find the correct expression for the bias, we need to use the fact that the variance of the halo field is equal
to the variance of the underlying matter density field plus the variance of the bias term plus the covariance
between the bias term and the underlying matter density field:

σ2
n = σ

2
m+n̄

2b2σ2
m+2n̄

2bσ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m

Using this expression, we can find the bias of the sampled halo field:

beff =
σ2
n

σ2
m
= 1 + 2b + 13b2

However, this is still not the correct expression for the bias. We need to take into account the fact that the
variance of the halo field is not equal to the variance of the underlying matter density field.
To find the correct expression for the bias, we need to use the fact that the variance of the halo field is equal
to the variance of the underlying matter density field plus the variance of the bias term plus the covariance
between the bias term and the underlying matter density field:

σ2
n = σ

2
m+n̄

2b2σ2
m+2n̄

2bσ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m

Using this expression, we can find the bias of the sampled halo field:

beff =
σ2
n

σ2
m
= 1 + 2b + 14b2

However, this is still not the correct expression for the bias. We need to take into account the fact that the
variance of the halo field is not equal to the variance of the underlying matter density field.
To find the correct expression for the bias, we need to use the fact that the variance of the halo field is equal
to the variance of the underlying matter density field plus the variance of the bias term plus the covariance
between the bias term and the underlying matter density field:

σ2
n = σ

2
m+n̄

2b2σ2
m+2n̄

2bσ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m

Using this expression, we can find the bias of the sampled halo field:

beff =
σ2
n

σ2
m
= 1 + 2b + 15b2

However, this is still not the correct expression for the bias. We need to take into account the fact that the
variance of the halo field is not equal to the variance of the underlying matter density field.
To find the correct expression for the bias, we need to use the fact that the variance of the halo field is equal
to the variance of the underlying matter density field plus the variance of the bias term plus the covariance
between the bias term and the underlying matter density field:

σ2
n = σ

2
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2b2σ2
m

Using this expression, we can find the bias of the sampled halo field:

beff =
σ2
n

σ2
m
= 1 + 2b + 16b2

However, this is still not the correct expression for the bias. We need to take into account the fact that the
variance of the halo field is not equal to the variance of the underlying matter density field.
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To find the correct expression for the bias, we need to use the fact that the variance of the halo field is equal
to the variance of the underlying matter density field plus the variance of the bias term plus the covariance
between the bias term and the underlying matter density field:

σ2
n = σ
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Using this expression, we can find the bias of the sampled halo field:

beff =
σ2
n

σ2
m
= 1 + 2b + 17b2

However, this is still not the correct expression for the bias. We need to take into account the fact that the
variance of the halo field is not equal to the variance of the underlying matter density field.
To find the correct expression for the bias, we need to use the fact that the variance of the halo field is equal
to the variance of the underlying matter density field plus the variance of the bias term plus the covariance
between the bias term and the underlying matter density field:

σ2
n = σ
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Using this expression, we can find the bias of the sampled halo field:

beff =
σ2
n

σ2
m
= 1 + 2b + 18b2

However, this is still not the correct expression for the bias. We need to take into account the fact that the
variance of the halo field is not equal to the variance of the underlying matter density field.
To find the correct expression for the bias, we need to use the fact that the variance of the halo field is equal
to the variance of the underlying matter density field plus the variance of the bias term plus the covariance
between the bias term and the underlying matter density field:

σ2
n = σ

2
m+n̄

2b2σ2
m+2n̄

2bσ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m+n̄

2b2σ2
m

Using this expression, we can find the bias of the sampled halo field:

beff =
σ2
n

σ2
m
= 1 + 2b + 19b2

However, this is still not the correct expression for the bias. We need to take into account the fact that the
variance of the halo field is not equal to the variance of the underlying matter density field.
To find the correct expression for the bias, we need to use the fact that the variance of the halo field is equal
to the variance of the underlying matter density field plus the variance of the bias term plus the covariance
between the bias term and the underlying matter density field:

σ2
n = σ

2
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Verification Results:

Auto verification result ([’2025-02-18T05:49:40.220973+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:56:54.175950Z) Grade: D
Notes: The submitted solution is fundamentally flawed and does not arrive at the correct expression for the
bias. The approach taken is incorrect, as it repeatedly attempts to calculate the variance of the halo field
using incorrect assumptions and does not properly account for the relationship between the halo field and
the underlying matter density field. The solution fails to incorporate the necessary domain knowledge and
mathematical steps outlined in the standard solution, such as the use of the correlation function and the
proper handling of Gaussian random fields. The final expression for the bias, beff = 1 + 2b + 19b

2, is incorrect
and does not match the standard solution’s result, which involves the normal cumulative distribution function
and the standard normal probability density function.
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2.2.7 Model: Qwen/Qwen2.5-7B-Instruct

Attempt 1 (2025-02-01T01:19:17.234487Z)

Detailed Solution: To solve this problem, we need to derive the effective bias beff of the halo field n(x) in
terms of the bare bias b and the variance σ2 of the matter density field δm(x).
Step 1: Understand the Problem We are given the halo number density field:

n(x) = n̄max(0,1 + bδm(x))

where: - n̄ is the bare number density. - b is the bare bias. - δm(x) is the matter density field.
Step 2: Devise a Plan To find the effective bias beff, we need to relate the variance of the halo number density
field n(x) to the variance of the matter density field δm(x).
Step 3: Carry Out the Plan 1. Variance of the Matter Density Field: The variance of the matter density
field δm(x) is given by:

σ2
m = ⟨δ

2
m(x)⟩

2. Variance of the Halo Number Density Field: We need to find the variance of n(x):

σ2
n = ⟨n

2
(x)⟩ − ⟨n(x)⟩2

3. Calculate ⟨n(x)⟩:
⟨n(x)⟩ = n̄⟨max(0,1 + bδm(x))⟩

Since δm(x) is a Gaussian field, the expectation value of max(0,1 + bδm(x)) can be calculated as:

⟨max(0,1 + bδm(x))⟩ = ∫
∞

−∞
max(0,1 + bδ)

1
√
2πσ2

m

e
− δ2

2σ2
m dδ

4. Calculate ⟨n2
(x)⟩:

⟨n2
(x)⟩ = n̄2

⟨max(0,1 + bδm(x))
2
⟩

Similarly, the expectation value of max(0,1 + bδm(x))
2 is:

⟨max(0,1 + bδm(x))
2
⟩ = ∫

∞

−∞
(1 + bδ)2

1
√
2πσ2

m

e
− δ2

2σ2
m dδ

5. Effective Bias: The effective bias beff is defined such that the variance of the halo number density field
is proportional to the variance of the matter density field:

σ2
n = b

2
effσ

2
m

Step 4: Derive the Equation From the above steps, we can derive the effective bias beff as:

beff =
σn

σm

Given that σ2
n = n̄

2
⟨max(0,1 + bδm(x))

2
⟩ − n̄2

⟨max(0,1 + bδm(x))⟩
2, we can simplify to:

beff =

¿
Á
ÁÀ⟨max(0,1 + bδm(x))2⟩ − ⟨max(0,1 + bδm(x))⟩2

⟨δ2m(x)⟩

Step 5: Convert to Python Code Now, we implement the function to calculate the effective bias in Python.

import numpy as np

def b_eff(sigma: float , b_in: float) -> float:

# Calculate the expectation values

exp_max = (1 + b_in * np.sqrt(2) * sigma * np.sqrt(np.pi / 2)) / (1 + np.sqrt(2)

* b_in * sigma * np.sqrt(np.pi / 2))

exp_max_squared = (1 + 2 * b_in * sigma * np.sqrt(np.pi / 2) + b_in **2 * 2 *

sigma **2 * np.pi) / (1 + np.sqrt(2) *

b_in * sigma * np.sqrt(np.pi / 2))** 2

# Calculate the effective bias

b_eff = np.sqrt(exp_max_squared - exp_max **2)

return b_eff
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This function calculates the effective bias beff given the variance σ and the bare bias bin.
Verification Results:

Auto verification result ([’2025-02-18T05:49:40.222470+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:57:02.397483Z) Grade: C
Notes: The submitted solution demonstrates a basic understanding of the problem by attempting to relate
the variance of the halo number density field to the variance of the matter density field. However, it has
significant issues. The approach to calculate the effective bias beff is not aligned with the standard solution,
which involves more detailed statistical mechanics and Gaussian random fields. The submitted solution
simplifies the problem by using a variance-based approach, which does not capture the full complexity of the
problem as described in the standard solution. Additionally, the Python code provided does not correctly
implement the necessary statistical calculations as derived in the standard solution. The final expression for
beff is not equivalent to the standard solution’s expression for b′.

Attempt 2 (2025-02-01T01:19:43.516119Z)

Detailed Solution: To solve this problem, we need to derive the effective bias beff of the sampled halo field
in terms of the bare bias b and the variance σ2 of the matter density field δm.
Step 1: Understand the Problem The halo number density field is given by:

n(x) = n̄max(0,1 + bδm(x))

Step 2: Devise a Plan To find the effective bias beff, we need to relate the variance of the halo number density
field to the variance of the matter density field. The effective bias can be defined as the ratio of the variance
of the halo number density field to the variance of the matter density field.
Step 3: Carry Out the Plan 1. Variance of the Matter Density Field: The variance of the matter density
field δm is given by:

σ2
m = ⟨δ

2
m⟩

2. Variance of the Halo Number Density Field: The variance of the halo number density field n(x)
can be written as:

σ2
n = ⟨n

2
⟩ − ⟨n⟩2

Substituting the expression for n(x):

⟨n2
⟩ = ⟨n̄2max(0,1 + bδm)

2
⟩

⟨n⟩ = n̄⟨max(0,1 + bδm)⟩

3. Simplifying the Variance: Since max(0,1 + bδm) is a step function, we can use the properties of the
expectation value:

⟨max(0,1 + bδm)⟩ = ∫ d3x max(0,1 + bδm)P (δm)

⟨max(0,1 + bδm)
2
⟩ = ∫ d3x max(0,1 + bδm)

2P (δm)

For a Gaussian field, the expectation values can be simplified using the properties of the Gaussian distribution.
The variance of the halo number density field can be approximated as:

σ2
n ≈ n̄

2
(⟨(1 + bδm)

2
⟩ − ⟨1 + bδm⟩

2
)

σ2
n ≈ n̄

2
(1 + 2b⟨δm⟩ + b

2
⟨δ2m⟩ − (1 + b⟨δm⟩)

2
)

σ2
n ≈ n̄

2
(1 + 2b⟨δm⟩ + b

2σ2
m − (1 + 2b⟨δm⟩ + b

2
⟨δ2m⟩))

σ2
n ≈ n̄

2b2σ2
m

4. Effective Bias: The effective bias beff is given by:

beff =
σn

σm
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beff =
n̄bσm

σm

beff = n̄b

Since the bare number density n̄ is a constant, we can simplify the expression for the effective bias as:

beff = b

Final Answer: The effective bias beff of the sampled halo field is given by:

beff = b

Now, let’s convert this final expression into Python code.

def b_eff(sigma: float , b_in: float) -> float:

return b_in

This function takes the bare bias b and the variance σ as inputs and returns the effective bias beff. Since the
variance σ does not affect the effective bias in this case, it is not used in the function.
Verification Results:

Auto verification result ([’2025-02-18T05:49:40.223790+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:57:12.050777Z) Grade: D
Notes: The submitted solution incorrectly concludes that the effective bias beff is equal to the bare bias b.
The standard solution shows that the effective bias is given by a more complex expression involving the
cumulative distribution function Φ1 and the probability density function ϕ1. The submitted solution fails to
account for these factors and incorrectly simplifies the variance of the halo number density field. Additionally,
the submitted solution does not correctly handle the expectation values for the step function max(0,1+bδm),
leading to an incorrect final result.

Attempt 3 (2025-02-01T01:23:07.181777Z)

Attempt 4 (2025-02-01T01:23:33.731183Z)

Detailed Solution: To solve this problem, we need to derive the effective bias beff of the sampled halo field.
The given halo number density field is:

n(x) = n̄max(0,1 + bδm(x))

Here, n̄ is the bare number density and b is the bare bias. The effective bias beff can be derived by considering
the expectation value of the halo number density field.
Step 1: Define the expectation value The expectation value of the halo number density field is:

⟨n(x)⟩ = n̄⟨max(0,1 + bδm(x))⟩

Step 2: Evaluate the expectation value The expectation value ⟨max(0,1 + bδm(x))⟩ can be split into two
parts:

⟨max(0,1 + bδm(x))⟩ = ⟨1 + bδm(x)⟩I(1 + bδm(x) > 0)
where I(1 + bδm(x) > 0) is an indicator function that is 1 if 1 + bδm(x) > 0 and 0 otherwise.
Since δm(x) is a Gaussian field with variance σ2, the probability that 1 + bδm(x) > 0 is given by:

P(1 + bδm(x) > 0) = P(δm(x) > −
1

b
)

For a Gaussian field, this probability is:

P(δm(x) > −
1

b
) = Φ(

1

bσ
)
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where Φ is the cumulative distribution function (CDF) of the standard normal distribution.
Step 3: Calculate the expectation value The expectation value of δm(x) is 0 (since it is a Gaussian field), so:

⟨1 + bδm(x)⟩ = 1 + b⟨δm(x)⟩ = 1

Thus, the expectation value of the halo number density field is:

⟨n(x)⟩ = n̄(1 + bσΦ(
1

bσ
))

Step 4: Define the effective bias The effective bias beff is defined such that:

⟨n(x)⟩ = n̄(1 + beffσ)

Equating the two expressions for ⟨n(x)⟩:

n̄(1 + beffσ) = n̄(1 + bσΦ(
1

bσ
))

Simplifying, we get:

beffσ = bσΦ(
1

bσ
)

Thus, the effective bias is:

beff = bΦ(
1

bσ
)

Step 5: Implement the Python function Now, we implement the function in Python.

import numpy as np

def b_eff(sigma: float , b_in: float) -> float:

return b_in * scipy.stats.norm.cdf(1 / (b_in * sigma))

However, since the problem specifies not to use any externally defined variables, we will use the
scipy.stats.norm.cdf function directly.

import numpy as np

from scipy.stats import norm

def b_eff(sigma: float , b_in: float) -> float:

return b_in * norm.cdf(1 / (b_in * sigma))

Final Answer:

import numpy as np

from scipy.stats import norm

def b_eff(sigma: float , b_in: float) -> float:

return b_in * norm.cdf(1 / (b_in * sigma))

Verification Results:

Auto verification result ([’2025-02-18T05:49:40.226130+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:57:30.209775Z) Grade: C
Notes: The submitted solution shows a basic understanding of the problem but has significant issues.

The main error is in the calculation of the effective bias beff. The standard solution derives b
′

as

b
′

=
bΦ1( 1

∣b∣σ
)

Φ1( 1
∣b∣σ
)+∣b∣σϕ1( 1

∣b∣σ
)
, which involves both the CDF and PDF of the normal distribution. The submit-

ted solution only uses the CDF, leading to an incorrect expression for beff = bΦ ( 1
bσ
). Additionally, the

solution lacks the detailed steps and reasoning found in the standard solution, such as the handling of the
indicator function and the integration of the Gaussian PDF. The Python implementation is consistent with
the submitted solution’s final answer but is based on an incorrect derivation.
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Attempt 5 (2025-02-01T01:24:21.138875Z)

Detailed Solution: To find the effective bias beff of the sampled halo field, we need to analyze the relationship
between the halo number density field n(x) and the underlying matter density field δm(x).
Given:

n(x) = n̄max(0,1 + bδm(x))

The effective bias beff is defined such that the halo number density field can be written as:

n(x) = n̄(1 + beffδm(x))

To find beff, we need to match the two expressions for n(x). Let’s consider the expectation value of n(x) over
the matter density field.
First, we need to find the expectation value of max(0,1+ bδm(x)). Let δm(x) be a Gaussian random variable
with mean 0 and variance σ2. The probability density function (PDF) of δm(x) is:

P (δm) =
1

√
2πσ2

e
− δ2m

2σ2

The expectation value of max(0,1 + bδm(x)) is:

⟨max(0,1 + bδm(x))⟩ = ∫
∞

−∞
max(0,1 + bδm)P (δm)dδm

We can split this integral into two parts:

⟨max(0,1 + bδm(x))⟩ = ∫
− 1

b

−∞
0 ⋅ P (δm)dδm + ∫

∞

− 1
b

(1 + bδm)P (δm)dδm

The first integral is zero, so we only need to evaluate the second integral:

⟨max(0,1 + bδm(x))⟩ = ∫
∞

− 1
b

(1 + bδm)
1

√
2πσ2

e
− δ2m

2σ2 dδm

This can be split into two integrals:

⟨max(0,1 + bδm(x))⟩ = ∫
∞

− 1
b

1
√
2πσ2

e
− δ2m

2σ2 dδm + b∫
∞

− 1
b

δm
1

√
2πσ2

e
− δ2m

2σ2 dδm

The first integral is the cumulative distribution function (CDF) of the standard normal distribution evaluated
at 1

bσ
:

∫

∞

− 1
b

1
√
2πσ2

e
− δ2m

2σ2 dδm = Φ(
1

bσ
)

The second integral can be evaluated using integration by parts:

∫

∞

− 1
b

δm
1

√
2πσ2

e
− δ2m

2σ2 dδm = −
1

bσ
[

1
√
2πσ2

e
− δ2m

2σ2 ]

∞

− 1
b

+
1

bσ ∫
∞

− 1
b

1
√
2πσ2

e
− δ2m

2σ2 dδm

The boundary term evaluates to:

−
1

bσ
(0 −

1
√
2πσ2

e
− 1

2b2σ2 ) =
1

bσ

1
√
2πσ2

e
− 1

2b2σ2

So the second integral becomes:
1

bσ
(Φ(

1

bσ
) +

1

bσ

1
√
2πσ2

e
− 1

2b2σ2 )

Combining these results, we get:

⟨max(0,1 + bδm(x))⟩ = Φ(
1

bσ
) +

1

bσ
(Φ(

1

bσ
) +

1

bσ

1
√
2πσ2

e
− 1

2b2σ2 )
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Simplifying, we get:

⟨max(0,1 + bδm(x))⟩ = (1 +
1

bσ
)Φ(

1

bσ
) +

1

b2σ2

1
√
2πσ2

e
− 1

2b2σ2

Since the bare number density n̄ is a constant, we can write:

⟨n(x)⟩ = n̄⟨max(0,1 + bδm(x))⟩

For the effective bias beff, we have:
⟨n(x)⟩ = n̄(1 + beff⟨δm(x)⟩)

Since ⟨δm(x)⟩ = 0, we get:
⟨n(x)⟩ = n̄(1 + beff ⋅ 0) = n̄

Thus, the effective bias beff is:

beff =
⟨max(0,1 + bδm(x))⟩ − 1

n̄

Given that ⟨max(0,1 + bδm(x))⟩ ≈ 1 +
1
bσ

Φ ( 1
bσ
) for large bσ, we can approximate:

beff ≈
1 + 1

bσ
Φ ( 1

bσ
) − 1

n̄
=
Φ ( 1

bσ
)

n̄

Since n̄ is a constant, we can simplify to:

beff ≈
Φ ( 1

bσ
)

n̄

Finally, we can write the Python function to compute beff:

import scipy.stats as stats

def b_eff(sigma: float , b_in: float) -> float:

return stats.norm.cdf(1 / (b_in * sigma))

This function uses the cumulative distribution function (CDF) of the standard normal distribution to compute
the effective bias beff.
Verification Results:

Auto verification result ([’2025-02-18T05:49:40.227808+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:57:37.660656Z) Grade: C
Notes: The submitted solution attempts to find the effective bias beff by considering the expectation value of
the halo number density field n(x). However, it diverges significantly from the standard solution’s approach,
which involves calculating the correlation functions and using the Fourier-transformed quantities. The sub-
mitted solution does not correctly derive the expression for beff in terms of the given parameters and does not
match the final expression for b′ in the standard solution. The approach shows some understanding of the
problem by attempting to use the Gaussian distribution and cumulative distribution function, but it lacks
the necessary steps and correct reasoning to arrive at the correct expression for the bias. Additionally, the
final expression for beff is incorrect and does not match the standard solution’s result.
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2.2.8 Model: Qwen/QwQ-32B-Preview

Attempt 1 (2025-02-01T06:47:28.126985Z)

Detailed Solution: To solve this problem, we need to determine the effective bias of the sampled halo field
given the bare bias and the variance in each pixel of the matter density field. We will approach this problem
in two main parts: first, we will use mathematical reasoning to derive a symbolic expression for the effective
bias, and second, we will translate this expression into a Python function.
Part 1: Mathematical Reasoning
Step 1: Understanding the Problem
We are given: - The matter density field: δm(x), which is Gaussian. - The halo number density field:
n(x) = n̄max(0,1 + bδm(x)), where n̄ is the bare number density and b is the bare bias.
Our goal is to find the effective bias of the sampled halo field, which depends on the bare bias and the variance
of δm(x) in each pixel.
Step 2: Defining Bias
In cosmology, bias describes how the distribution of a particular population of objects (like halos) relates to
the underlying matter distribution. The effective bias can be thought of as the linear relationship between
the halo density contrast and the matter density contrast.
Mathematically, bias b is defined such that:

δh = bδm

where δh is the halo density contrast.
Step 3: Expressing Halo Density Contrast
Given the halo number density field:

n(x) = n̄max(0,1 + bδm(x))

We can express the halo density contrast δh(x) as:

δh(x) =
n(x) − n̄

n̄
=max(0,1 + bδm(x)) − 1

Step 4: Simplifying the Expression
Simplify the expression for δh(x):

δh(x) =max(0,1 + bδm(x)) − 1

This can be rewritten as:

δh(x) =

⎧⎪⎪
⎨
⎪⎪⎩

0 if 1 + bδm(x) < 0

1 + bδm(x) − 1 if 1 + bδm(x) ≥ 0

δh(x) =

⎧⎪⎪
⎨
⎪⎪⎩

0 if δm(x) < −
1
b

bδm(x) if δm(x) ≥ −
1
b

Step 5: Calculating the Effective Bias
The effective bias beff is given by the ratio of the halo density contrast to the matter density contrast, averaged
over the field:

beff =
⟨δhδm⟩

⟨δ2m⟩

where ⟨⋅⟩ denotes the ensemble average.
Given that δm(x) is Gaussian with zero mean and variance σ2, we can compute the numerator ⟨δhδm⟩.
Step 6: Computing the Numerator
We need to compute:

⟨δhδm⟩ = ∫ P (δm)δh(δm)δm dδm

where P (δm) is the probability density function of δm, which is Gaussian:

P (δm) =
1

√
2πσ2

e
− δ2m

2σ2

Substituting δh(δm):

⟨δhδm⟩ = ∫
∞

−∞
P (δm)δh(δm)δm dδm
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= ∫

−1/b

−∞
0 ⋅ δm P (δm)dδm + ∫

∞

−1/b
bδm ⋅ δm P (δm)dδm

= b∫
∞

−1/b
δ2m P (δm)dδm

Step 7: Evaluating the Integral
We need to evaluate:

∫

∞

−1/b
δ2m P (δm)dδm

Given that P (δm) is a Gaussian distribution with mean 0 and variance σ2, we can use the properties of the
Gaussian integral.
First, recall that for a standard normal variable z = δm

σ
, the integral becomes:

∫

∞

−1/b
δ2m P (δm)dδm = ∫

∞

−1/(bσ)
(zσ)2

1
√
2π

e−z
2/2 dz σ

= σ2
∫

∞

−1/(bσ)
z2

1
√
2π

e−z
2/2 dz

The integral ∫
∞
a z2ϕ(z)dz where ϕ(z) is the standard normal PDF can be expressed in terms of the standard

normal CDF Φ(z) and PDF ϕ(z):

∫

∞

a
z2ϕ(z)dz = ϕ(a) − a[1 −Φ(a)]

Thus:

∫

∞

−1/(bσ)
z2ϕ(z)dz = ϕ(−

1

bσ
) − (−

1

bσ
) [1 −Φ(−

1

bσ
)]

= ϕ(
1

bσ
) +

1

bσ
[1 −Φ(−

1

bσ
)]

where we used the fact that ϕ(−z) = ϕ(z) and Φ(−z) = 1 −Φ(z).
Step 8: Simplifying the Expression
Substituting back:

⟨δhδm⟩ = bσ
2
[ϕ(

1

bσ
) +

1

bσ
(1 −Φ(−

1

bσ
))]

Step 9: Computing the Denominator
The denominator is the variance of the matter density field:

⟨δ2m⟩ = σ
2

Step 10: Combining Numerator and Denominator
Thus, the effective bias is:

beff =
⟨δhδm⟩

⟨δ2m⟩
=
bσ2
[ϕ ( 1

bσ
) + 1

bσ
(1 −Φ (− 1

bσ
))]

σ2

beff = b [ϕ(
1

bσ
) +

1

bσ
(1 −Φ(−

1

bσ
))]

Step 11: Final Expression
Therefore, the effective bias is:

beff = b [ϕ(
1

bσ
) +

1

bσ
(1 −Φ(−

1

bσ
))]

Part 2: Python Implementation
To implement this in Python, we need to use the standard normal PDF ϕ(z) and CDF Φ(z), which are
available in the scipy.stats module.
Final Solution Code

import scipy.stats as stats

def b_eff(sigma: float , b_in: float) -> float:

z = 1 / (b_in * sigma)

phi_z = stats.norm.pdf(z)

Phi_neg_z = stats.norm.cdf(-z)

b_eff = b_in * (phi_z + (1 / (b_in * sigma)) * (1 - Phi_neg_z))

return b_eff
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Explanation
1. Mathematical Derivation: - We started by understanding the relationship between the halo number
density and the matter density field. - We expressed the halo density contrast and then derived the effec-
tive bias using ensemble averages. - We computed the required integrals using properties of the Gaussian
distribution.
2. Python Implementation: - We translated the derived mathematical expression into a Python function.
- We used the scipy.stats.norm.pdf and scipy.stats.norm.cdf functions to compute the standard normal PDF
and CDF, respectively. - The function befftakesthevarianceσ and the bare bias bin as inputs and returns
the effective bias beff.
Verification Results:

Auto verification result ([’2025-02-18T05:49:40.229892+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:57:47.407979Z) Grade: B
Notes: The submitted solution correctly identifies the problem and follows a logical approach to derive
the effective bias. It correctly defines the halo density contrast and uses the Gaussian properties of the
matter density field. The solution computes the effective bias using ensemble averages and evaluates the
necessary integrals. However, there is a discrepancy in the final expression for the effective bias compared
to the standard solution. The submitted solution’s final expression for beff is b [ϕ ( 1

bσ
) + 1

bσ
(1 −Φ (− 1

bσ
))],

whereas the standard solution provides b
′

=
bΦ1( 1

∣b∣σ
)

Φ1( 1
∣b∣σ
)+∣b∣σϕ1( 1

∣b∣σ
)
. The discrepancy suggests a minor error in the

handling of the Gaussian integrals or the interpretation of the bias relationship. The Python implementation
is consistent with the derived expression but does not match the standard solution’s final form.

Attempt 2 (2025-02-01T06:51:16.107662Z)

Detailed Solution: To solve this problem, we need to determine the effective bias of the sampled halo field
given the bare bias and the variance in each pixel of the matter density field. We will approach this problem
in two main parts: first, we will use mathematical reasoning to derive a symbolic expression for the effective
bias, and second, we will translate this expression into a Python function.
Part 1: Mathematical Reasoning
Step 1: Understanding the Problem
We are given: - The matter density field δm(x), which is Gaussian. - The halo number density field n(x) =
n̄max(0,1 + bδm(x)), where n̄ is the bare number density and b is the bare bias.
Our goal is to find the effective bias of the sampled halo field, which depends on the bare bias and the variance
of the matter density field in each pixel.
Step 2: Defining Bias
In cosmology, bias describes how the distribution of halos relates to the underlying matter distribution. The
bias parameter quantifies this relationship. Here, we need to find the effective bias that accounts for the
thresholding introduced by the max(0, ⋅) function.
Step 3: Expressing the Halo Density
First, let’s express the halo number density n(x):

n(x) = n̄max(0,1 + bδm(x))

This means that in regions where 1 + bδm(x) > 0, the halo density is n̄(1 + bδm(x)), and zero otherwise.
Step 4: Calculating the Mean Halo Density
The mean halo density n̄h is given by the expectation value of n(x):

n̄h = ⟨n(x)⟩ = n̄⟨max(0,1 + bδm(x))⟩

Since δm(x) is Gaussian with mean zero and variance σ2, we can write:

⟨max(0,1 + bδm)⟩ = ∫
∞

−∞
max(0,1 + bδm)

1
√
2πσ2

e
− δ2m

2σ2 dδm
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This integral can be split into two parts:

∫

− 1
b

−∞
0 ⋅

1
√
2πσ2

e
− δ2m

2σ2 dδm + ∫
∞

− 1
b

(1 + bδm)
1

√
2πσ2

e
− δ2m

2σ2 dδm

The first integral is zero, so we only need to evaluate the second integral:

⟨max(0,1 + bδm)⟩ = ∫
∞

− 1
b

(1 + bδm)
1

√
2πσ2

e
− δ2m

2σ2 dδm

Step 5: Evaluating the Integral
Let’s split the integral into two parts:

∫

∞

− 1
b

1 ⋅
1

√
2πσ2

e
− δ2m

2σ2 dδm + b∫
∞

− 1
b

δm
1

√
2πσ2

e
− δ2m

2σ2 dδm

The first integral is the cumulative distribution function (CDF) of the Gaussian distribution evaluated at − 1
b
:

∫

∞

− 1
b

1
√
2πσ2

e
− δ2m

2σ2 dδm = 1 −Φ(−
1

bσ
)

where Φ is the CDF of the standard normal distribution.
The second integral can be evaluated by parts or by recognizing it as the expectation of δm truncated at
− 1

b
. However, for simplicity, we can use the fact that for a Gaussian variable, the expectation of δm above a

certain threshold can be expressed in terms of the standard normal PDF and CDF.
Lets denote ν = 1

bσ
. Then:

∫

∞

− 1
b

δm
1

√
2πσ2

e
− δ2m

2σ2 dδm = σ [ϕ (ν) − (−ν) (1 −Φ (ν))]

where ϕ is the PDF of the standard normal distribution.
However, this seems a bit complicated. Let’s consider a different approach.
Step 6: Simplifying the Expression
Given that δm is Gaussian with mean 0 and variance σ2, we can standardize it by defining x = δm

σ
, which is

standard normal.
Then, the integral becomes:

⟨max(0,1 + bδm)⟩ = ∫
∞

−∞
max (0,1 + bσx)

1
√
2π

e−
x2

2 dx

Lets set ν = 1
bσ

, then the lower limit of the non-zero part is x = −ν:

⟨max(0,1 + bσx)⟩ = ∫
∞

−ν
(1 + bσx)

1
√
2π

e−
x2

2 dx

This can be split into:

∫

∞

−ν
1 ⋅

1
√
2π

e−
x2

2 dx + bσ∫
∞

−ν
x

1
√
2π

e−
x2

2 dx

The first integral is:

1 −Φ(−ν) = Φ(ν)

The second integral can be evaluated using integration by parts or recognizing it as the expectation of x from
−ν to ∞:

∫

∞

−ν
x

1
√
2π

e−
x2

2 dx = ϕ(ν) + ν[1 −Φ(ν)]

where ϕ(ν) = 1√
2π

e−
ν2

2 .

Therefore:

⟨max(0,1 + bδm)⟩ = Φ(ν) + bσ[ϕ(ν) + ν(1 −Φ(ν))]

Substituting back ν = 1
bσ

:
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⟨max(0,1 + bδm)⟩ = Φ(
1

bσ
) + bσ [ϕ(

1

bσ
) +

1

bσ
(1 −Φ(

1

bσ
))]

Simplify the expression:

= Φ(
1

bσ
) + bσϕ(

1

bσ
) + (1 −Φ(

1

bσ
))

= 1 + bσϕ(
1

bσ
)

Therefore, the mean halo density is:

n̄h = n̄ [1 + bσϕ(
1

bσ
)]

Step 7: Defining the Effective Bias
The effective bias beff is defined such that the halo density contrast δh =

n−n̄h
n̄h

is related to the matter density
contrast δm by δh = beffδm.
First, express n(x) in terms of δm:

n(x) = n̄ [1 + bδm(x)] for 1 + bδm(x) > 0

Otherwise, n(x) = 0.
The halo density contrast is:

δh =
n − n̄h

n̄h
=
n̄ [1 + bδm] − n̄h

n̄h
for 1 + bδm > 0

Substitute n̄h = n̄ [1 + bσϕ (
1
bσ
)]:

δh =
n̄(1 + bδm) − n̄ [1 + bσϕ (

1
bσ
)]

n̄ [1 + bσϕ ( 1
bσ
)]

=
b(δm − σϕ (

1
bσ
))

1 + bσϕ ( 1
bσ
)

Assuming δm is small, we can approximate δh ≈ beffδm, where:

beff =
b

1 + bσϕ ( 1
bσ
)

However, this seems inconsistent with the earlier expression. Let’s reconsider.
Step 8: Correct Approach to Effective Bias
A better way to define the effective bias is through the cross-correlation between the halo field and the matter
field.
The effective bias beff can be defined as:

beff =
⟨nδm⟩

⟨n⟩⟨δm⟩

Given that ⟨δm⟩ = 0, this definition is not directly applicable. Instead, we consider the cross-correlation in
Fourier space or use the definition:

beff =
⟨nδm⟩

⟨n⟩σ2
σ2

But this seems convoluted. Let’s try another approach.
Step 9: Relating Halo Density and Matter Density
We can express the halo density contrast as:

δh =
n − n̄h

n̄h
=
n̄max(0,1 + bδm) − n̄h

n̄h

We need to find the linear relationship between δh and δm, which will give us the effective bias.
Given the complexity, perhaps it’s better to consider the ratio of the variances or use perturbation theory,
but this might be too involved for this context.
Step 10: Simplifying Assumptions
Assuming that the thresholding effect is small or that b is large enough that the threshold doesn’t significantly
affect the linear bias, we might approximate beff ≈ b. However, this doesn’t account for the thresholding.
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Alternatively, we can consider that the effective bias is modified by the selection function introduced by the
threshold.
Step 11: Using Selection Function
The selection function W (δm) =max(0,1 + bδm). The effective bias can be related to the linear bias and the
selection function.
In general, for a selection function W (δm), the effective bias is given by:

beff = b +
⟨W ′
(δm)δm⟩

⟨W (δm)⟩

where W ′
(δm) is the derivative of the selection function with respect to δm.

For W (δm) =max(0,1 + bδm), the derivative is:

W ′
(δm) = b for 1 + bδm > 0

Thus:

⟨W ′
(δm)δm⟩ = b⟨δm⟩1+bδm>0

Given that ⟨δm⟩ = 0, and considering the threshold, we have:

⟨δm⟩1+bδm>0 =
∫
∞
− 1

b
δm

1√
2πσ2

e
− δ2m

2σ2 dδm

∫
∞
− 1

b

1√
2πσ2

e
− δ2m

2σ2 dδm

=
σϕ ( 1

bσ
)

1 −Φ (− 1
bσ
)
=
σϕ ( 1

bσ
)

Φ ( 1
bσ
)

Therefore:

beff = b + b
σϕ ( 1

bσ
)

Φ ( 1
bσ
)
= b
⎡
⎢
⎢
⎢
⎣
1 +

σϕ ( 1
bσ
)

Φ ( 1
bσ
)

⎤
⎥
⎥
⎥
⎦

This seems more consistent with the earlier steps.
Step 12: Final Expression for Effective Bias
Thus, the effective bias is:

beff = b
⎡
⎢
⎢
⎢
⎣
1 +

σϕ ( 1
bσ
)

Φ ( 1
bσ
)

⎤
⎥
⎥
⎥
⎦

where:

- ϕ(x) = 1√
2π

e−
x2

2 is the standard normal PDF.

- Φ(x) is the standard normal CDF.
Part 2: Python Implementation
Now, we will implement this expression in Python. We need to use functions from the scipy.stats module to
compute the standard normal PDF and CDF.
Final Solution Code
To solve this problem, we need to calculate the effective bias of the sampled halo field based on the bare bias
and the variance in each pixel of the matter density field. The solution involves mathematical reasoning to
derive a symbolic expression for the effective bias and then translating this expression into a Python function.
Final Solution To find the effective bias of the sampled halo field, we start with the given halo number density
field:

n(x) = n̄max(0,1 + bδm(x))

where δm(x) is the Gaussian matter density field with mean zero and variance σ2, n̄ is the bare number
density, and b is the bare bias.
Approach
1. Mean Halo Density Calculation: - Compute the mean halo density n̄h by taking the expectation of
n(x). - This involves integrating the maximum function over the Gaussian density field.
2. Effective Bias Definition: - Define the effective bias beff using the relationship between the halo density
contrast and the matter density contrast. - Use the selection function approach to relate the effective bias to
the bare bias and the properties of the Gaussian field.
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3. Mathematical Derivation: - Standardize the Gaussian variable to simplify integrals. - Use the properties
of the standard normal probability density function (PDF) and cumulative distribution function (CDF) to
express the effective bias.
4. Python Implementation: - Implement the derived formula using Python’s scipy.stats module for the
standard normal PDF and CDF.
Solution Code

import scipy.stats as stats

def b_eff(sigma: float , b_in: float) -> float:

nu = 1 / (b_in * sigma)

phi_nu = stats.norm.pdf(nu)

Phi_nu = stats.norm.cdf(nu)

b_eff_value = b_in * (1 + (sigma * phi_nu) / Phi_nu)

return b_eff_value

Explanation
1. Mean Halo Density: - The mean halo density n̄h is calculated by taking the expectation of max(0,1+bδm)
over the Gaussian density field δm. - This expectation is split into two integrals, one for the constant term
and one for the linear term in δm.
2. Effective Bias Formula: - The effective bias beff is derived using the selection function approach, which
accounts for the thresholding introduced by the max(0, ⋅) function. - The formula incorporates the standard
normal PDF ϕ(x) and CDF Φ(x) evaluated at x = 1

bσ
.

3. Python Function: - The function beffcomputestheeffectivebiasusingthederivedformula. −
Itusesstats.norm.pdfandstats.norm.cdffromscipy.statstoevaluatethestandardnormalPDFandCDF, respectively.
This approach ensures that the effective bias is accurately calculated based on the given bare bias and the
variance of the matter density field.
Verification Results:

Auto verification result ([’2025-02-18T05:49:40.231972+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:57:57.804213Z) Grade: C
Notes: The submitted solution demonstrates a basic understanding of the problem and attempts to derive
the effective bias using mathematical reasoning. However, there are significant issues in the approach and
final expression. The solution does not correctly derive the effective bias expression as given in the standard

solution. The final expression for the effective bias, beff = b [1 +
σϕ( 1

bσ
)

Φ( 1
bσ
) ], is incorrect compared to the standard

solution’s b
′

=
bΦ1( 1

∣b∣σ
)

Φ1( 1
∣b∣σ
)+∣b∣σϕ1( 1

∣b∣σ
)
. The approach lacks clarity in connecting the derived expressions to the

standard solution’s final result. Additionally, the Python implementation does not align with the correct
mathematical derivation.

Attempt 3 (2025-02-01T06:57:26.204576Z)

Detailed Solution: To solve this problem, we need to determine the effective bias of the sampled halo field
given the bare bias and the variance in each pixel of the matter density field. We will approach this problem
in two main parts: first, we will use mathematical reasoning to derive a symbolic expression for the effective
bias, and second, we will translate this expression into a Python function.
Part 1: Mathematical Reasoning
Step 1: Understanding the Problem
We are given: - The matter density field δm(x), which is Gaussian. - The halo number density field n(x) =
n̄max(0,1 + bδm(x)), where n̄ is the bare number density and b is the bare bias.
We need to find the effective bias of the sampled halo field, which depends on the bare bias and the variance
of δm(x) in each pixel.
Step 2: Defining Bias
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In cosmology, bias describes how the distribution of a particular type of object (like halos) relates to the
underlying matter distribution. The effective bias beff can be defined through the cross-correlation between
the halo field and the matter field.
Step 3: Calculating the Effective Bias
To find beff, we need to compute the cross-correlation between n(x) and δm(x), and normalize it appropriately.
First, recall that the matter density field δm(x) is Gaussian with zero mean and variance σ2.
Given:

n(x) = n̄max(0,1 + bδm(x))

We can express the cross-correlation as:

⟨n(x)δm(x)⟩ = n̄⟨max(0,1 + bδm(x))δm(x)⟩

Since δm(x) is Gaussian with mean 0 and variance σ2, we can compute the expectation over the Gaussian
distribution.
Step 4: Evaluating the Expectation
To compute ⟨max(0,1 + bδm(x))δm(x)⟩, we need to integrate over all possible values of δm(x):

⟨max(0,1 + bδm(x))δm(x)⟩ = ∫
∞

−∞
max(0,1 + bδ)δ

e−δ
2/(2σ2)
√
2πσ2

dδ

We can split the integral into two parts: one where 1 + bδ > 0 and one where 1 + bδ ≤ 0.
Lets define:

δc = −
1

b
Then:

⟨max(0,1 + bδ)δ⟩ = ∫
∞

δc

(1 + bδ)δ
e−δ

2/(2σ2)
√
2πσ2

dδ

Step 5: Solving the Integral
We can split the integral into two parts:

∫

∞

δc

δ
e−δ

2/(2σ2)
√
2πσ2

dδ + b∫
∞

δc

δ2
e−δ

2/(2σ2)
√
2πσ2

dδ

Lets compute each integral separately.
First integral:

I1 = ∫
∞

δc

δ
e−δ

2/(2σ2)
√
2πσ2

dδ

This is the expectation of δ given δ > δc. For a Gaussian distribution:

I1 =
1

√
2πσ2

∫

∞

δc

δe−δ
2/(2σ2)dδ

Let u = δ2/(2σ2
), then du = (δ/σ2

)dδ, so:

I1 =
σ2

√
2πσ2

∫

∞

δ2c/(2σ2)
e−udu =

σ
√
2π

e−δ
2
c/(2σ

2)

Second integral:

I2 = ∫
∞

δc

δ2
e−δ

2/(2σ2)
√
2πσ2

dδ

This is related to the second moment of the Gaussian distribution above δc:

I2 =
1

√
2πσ2

∫

∞

δc

δ2e−δ
2/(2σ2)dδ

Using integration by parts or recognizing it as the variance plus the square of the mean for the truncated
Gaussian:

I2 = σ
2 ⎛

⎝
1 +

δc
σ

e−δ
2
c/(2σ

2)
√
2π(1 −Φ(δc/σ))

⎞

⎠
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Where Φ is the cumulative distribution function of the standard normal distribution.
However, this seems complicated. Instead, let’s use the fact that for a Gaussian δ, the expectation ⟨δ∣δ > δc⟩ =

∫ ∞δc δe−δ
2
/(2σ2

)dδ

∫ ∞δc e−δ
2/(2σ2)dδ

= σe−δ
2
c /(2σ

2
)

√
2π(1−Φ(δc/σ))

Similarly, ⟨δ2∣δ > δc⟩ = σ
2
+ (

δce
−δ2c /(2σ

2
)

√
2π(1−Φ(δc/σ))

)

2

But this might not be necessary. Let’s consider a different approach.
Step 6: Simplifying the Expression
Given the complexity, let’s consider the case where δc is small compared to σ, or vice versa.
Alternatively, recognize that the bias can be related to the slope of the linear relation between the halo density
and the matter density.
Given that, the effective bias can be expressed as:

beff =
⟨nδm⟩

⟨δ2m⟩

We already have ⟨nδm⟩ = n̄⟨max(0,1 + bδm)δm⟩, and ⟨δ
2
m⟩ = σ

2.
So,

beff =
n̄⟨max(0,1 + bδm)δm⟩

σ2

Now, ⟨max(0,1 + bδm)δm⟩ can be computed as:

⟨max(0,1 + bδm)δm⟩ = ∫
∞

−∞
max(0,1 + bδ)δ

e−δ
2/(2σ2)
√
2πσ2

dδ

As before, split the integral at δc = −1/b:

∫

∞

δc

(1 + bδ)δ
e−δ

2/(2σ2)
√
2πσ2

dδ

Lets compute this integral step by step.
First, expand the integrand:

(1 + bδ)δ = δ + bδ2

So,

∫

∞

δc

(δ + bδ2)
e−δ

2/(2σ2)
√
2πσ2

dδ = ∫
∞

δc

δ
e−δ

2/(2σ2)
√
2πσ2

dδ + b∫
∞

δc

δ2
e−δ

2/(2σ2)
√
2πσ2

dδ

Lets compute each term separately.
First term:

I1 = ∫
∞

δc

δ
e−δ

2/(2σ2)
√
2πσ2

dδ

This is the expectation of δ given δ > δc. For a Gaussian distribution, this is:

I1 =
∫
∞
δc

δe−δ
2/(2σ2)dδ

√
2πσ2

=
σe−δ

2
c/(2σ

2)
√
2π

Second term:

I2 = ∫
∞

δc

δ2
e−δ

2/(2σ2)
√
2πσ2

dδ

This is related to the second moment of the Gaussian distribution above δc. It can be expressed as:

I2 = σ
2 ⎛

⎝
1 +

δc
σ

e−δ
2
c/(2σ

2)
√
2π(1 −Φ(δc/σ))

⎞

⎠

Where Φ is the cumulative distribution function of the standard normal distribution.
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Therefore, combining these:

⟨max(0,1 + bδm)δm⟩ = I1 + bI2 =
σe−δ

2
c/(2σ

2)
√
2π

+ bσ2 ⎛

⎝
1 +

δc
σ

e−δ
2
c/(2σ

2)
√
2π(1 −Φ(δc/σ))

⎞

⎠

Now, plug this back into the expression for beff:

beff =
n̄

σ2

⎛

⎝

σe−δ
2
c/(2σ

2)
√
2π

+ bσ2 ⎛

⎝
1 +

δc
σ

e−δ
2
c/(2σ

2)
√
2π(1 −Φ(δc/σ))

⎞

⎠

⎞

⎠

Simplify:

beff =
n̄

σ2

⎛

⎝

σe−δ
2
c/(2σ

2)
√
2π

+ bσ2
+ bδc

σe−δ
2
c/(2σ

2)
√
2π(1 −Φ(δc/σ))

⎞

⎠

This expression is quite complex. To make it more manageable, let’s consider that n̄ is a constant and can
be factored out, but in reality, n̄ should be such that it normalizes the halo number density appropriately.
However, since it’s a constant multiplier, and we are interested in the bias, which is a relative measure,
perhaps it cancels out in the final expression.
Wait a minute, perhaps I need to think differently. Maybe the effective bias can be directly related to the
linear relation between n and δm.
Lets consider that in linear biasing, n = n̄(1+beffδm). Comparing this to our expression n = n̄max(0,1+bδm),
perhaps we can find a relation between beff and b.
For small values of bδm, max(0,1 + bδm) ≈ 1 + bδm when 1 + bδm > 0, which would suggest that beff ≈ b in this
limit.
However, for larger values of b or δm, this approximation breaks down, and we need a more accurate expression.
Alternatively, perhaps we can compute the cross-correlation coefficient between n and δm, which is related to
the bias.
The cross-correlation coefficient is given by:

rnδ =
⟨nδm⟩ − ⟨n⟩⟨δm⟩

σnσδm

Given that ⟨δm⟩ = 0, this simplifies to:

rnδ =
⟨nδm⟩

σnσδm

In linear biasing, rnδ = 1, meaning that n and δm are perfectly correlated. Therefore:

beff =
⟨nδm⟩

⟨δ2m⟩
=
rnδσnσδm

σ2
δm

= rnδ
σn

σδm

But since rnδ = 1 in linear biasing, beff =
σn
σδm

.

However, in our case, n = n̄max(0,1 + bδm), which is a nonlinear function of δm, so the relation might be
more complex.
Alternatively, perhaps we can compute beff directly from the definition:

beff =
⟨nδm⟩

⟨δ2m⟩

We already have expressions for ⟨nδm⟩ and ⟨δ
2
m⟩ = σ

2, so:

beff =
n̄⟨max(0,1 + bδm)δm⟩

σ2

Now, to find ⟨max(0,1 + bδm)δm⟩, we can proceed as follows:
Define δc = −1/b, then:

⟨max(0,1 + bδm)δm⟩ = ∫
∞

δc

(1 + bδ)δ
e−δ

2/(2σ2)
√
2πσ2

dδ

Lets compute this integral step by step.
First, split the integral into two parts:
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∫

∞

δc

δ
e−δ

2/(2σ2)
√
2πσ2

dδ + b∫
∞

δc

δ2
e−δ

2/(2σ2)
√
2πσ2

dδ

Compute the first integral:

I1 = ∫
∞

δc

δ
e−δ

2/(2σ2)
√
2πσ2

dδ =
σ
√
2π

e−δ
2
c/(2σ

2)

Compute the second integral:

I2 = ∫
∞

δc

δ2
e−δ

2/(2σ2)
√
2πσ2

dδ = σ2 ⎛

⎝
1 +

δc
σ

e−δ
2
c/(2σ

2)
√
2π(1 −Φ(δc/σ))

⎞

⎠

Therefore:

⟨max(0,1 + bδm)δm⟩ = I1 + bI2 =
σ
√
2π

e−δ
2
c/(2σ

2)
+ bσ2 ⎛

⎝
1 +

δc
σ

e−δ
2
c/(2σ

2)
√
2π(1 −Φ(δc/σ))

⎞

⎠

Now, plug this back into the expression for beff:

beff =
n̄

σ2

⎛

⎝

σ
√
2π

e−δ
2
c/(2σ

2)
+ bσ2 ⎛

⎝
1 +

δc
σ

e−δ
2
c/(2σ

2)
√
2π(1 −Φ(δc/σ))

⎞

⎠

⎞

⎠

This expression still seems quite involved. Perhaps there is a simpler way to approach this problem.
Step 7: Considering the Mean and Variance
Lets consider the mean of the halo number density:

⟨n⟩ = n̄⟨max(0,1 + bδm)⟩ = n̄
⎛

⎝
∫

∞

δc

(1 + bδ)
e−δ

2/(2σ2)
√
2πσ2

dδ
⎞

⎠

Similarly, the variance of the halo number density can be computed, but this might not directly help us find
the bias.
Alternatively, perhaps we can linearly relate n to δm around the mean.
Lets assume that for small fluctuations, n ≈ n̄(1 + beffδm). Then, the cross-correlation would be:

⟨nδm⟩ ≈ n̄beff⟨δ
2
m⟩ = n̄beffσ

2

Comparing this to our earlier expression:

⟨nδm⟩ = n̄
⎛

⎝

σ
√
2π

e−δ
2
c/(2σ

2)
+ bσ2 ⎛

⎝
1 +

δc
σ

e−δ
2
c/(2σ

2)
√
2π(1 −Φ(δc/σ))

⎞

⎠

⎞

⎠

Therefore, equating the two expressions for ⟨nδm⟩:

n̄beffσ
2
= n̄
⎛

⎝

σ
√
2π

e−δ
2
c/(2σ

2)
+ bσ2 ⎛

⎝
1 +

δc
σ

e−δ
2
c/(2σ

2)
√
2π(1 −Φ(δc/σ))

⎞

⎠

⎞

⎠

Simplify by dividing both sides by n̄σ2:

beff =

σ√
2π

e−δ
2
c/(2σ

2)

σ2
+ b
⎛

⎝
1 +

δc
σ

e−δ
2
c/(2σ

2)
√
2π(1 −Φ(δc/σ))

⎞

⎠

Simplify further:

beff =
1

σ
√
2π

e−δ
2
c/(2σ

2)
+ b
⎛

⎝
1 +

δc
σ

e−δ
2
c/(2σ

2)
√
2π(1 −Φ(δc/σ))

⎞

⎠

This is still a complex expression. To make it more manageable, lets consider that δc = −1/b, and substitute
it into the equation.

Lets set ν = δc
σ
= − 1

bσ
, then e−δ

2
c/(2σ

2)
= e−ν

2/2, and 1 −Φ(δc/σ) = 1 −Φ(−∣ν∣) = Φ(∣ν∣).
Therefore, the expression becomes:
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beff =
1

σ
√
2π

e−ν
2/2
+ b
⎛

⎝
1 +
−1/b

σ

e−ν
2/2

√
2πΦ(∣ν∣)

⎞

⎠

Simplify:

beff =
1

σ
√
2π

e−ν
2/2
+ b
⎛

⎝
1 −

1

bσ

e−ν
2/2

√
2πΦ(∣ν∣)

⎞

⎠

beff =
1

σ
√
2π

e−ν
2/2
+ b −

1

σ

e−ν
2/2

√
2πΦ(∣ν∣)

This still seems too complicated. Maybe there is a better way to approach this problem.
Step 8: Alternative Approach Using Fourier Space
In cosmology, biases are often studied in Fourier space, where the relation between the halo density and
matter density can be more straightforward.
However, since the problem is specified in real space and involves a thresholding operation, it might not be
straightforward to translate into Fourier space.
Alternatively, perhaps we can consider the peak-background split formalism, which relates the bias of halos
to the variance of the matter density field.
In the peak-background split, the bias is given by:

b =
d ln n̄

d lnρ
+
σ2

ρ

d ln n̄

d lnσ2

Where ρ is the mean matter density.
However, this might not directly apply to our case, where we have a specific form for n(x).
Step 9: Simplifying Assumptions
To make progress, lets consider the limit where σ is small compared to 1/b, meaning that δm fluctuations are
small.
In this case, δc = −1/b is negative, and for small σ, the integral from δc to ∞ is approximately the integral
from −∞ to ∞, since δc is far to the left.
Thus, ⟨max(0,1 + bδm)δm⟩ ≈ ⟨(1 + bδm)δm⟩ = ⟨δm⟩ + b⟨δ

2
m⟩ = 0 + bσ

2
= bσ2

Therefore, beff ≈
n̄bσ2

σ2 = n̄b
But this seems too simplistic and likely incorrect, as n̄ should not appear in the bias.
Alternatively, perhaps in this limit, beff ≈ b, which makes sense intuitively.
For larger σ, the threshold becomes more significant, and the bias should be modified accordingly.
Step 10: Looking for a Scaling Relation
Given the complexity of the integral, perhaps we can find a scaling relation between beff and b, dependent on
σ.
Lets consider defining a function f(ν), where ν = δc/σ = −1/(bσ), and express beff in terms of f(ν).
From the earlier expression:

beff =
1

σ
√
2π

e−ν
2/2
+ b
⎛

⎝
1 −

ν

∣ν∣

e−ν
2/2

√
2πΦ(∣ν∣)

⎞

⎠

Since ν = −1/(bσ), ∣ν∣ = ν if ν < 0, but in our case, ν = −1/(bσ), so ν is negative if b > 0, which is typically the
case for bias parameters.
Therefore, ν

∣ν∣ = −1, and Φ(∣ν∣) = Φ(−ν) = 1 −Φ(ν).
Thus, the expression becomes:

beff =
1

σ
√
2π

e−ν
2/2
+ b
⎛

⎝
1 +

e−ν
2/2

√
2π(1 −Φ(ν))

⎞

⎠

This can be further simplified by recognizing that e−ν
2
/2

√
2π(1−Φ(ν)) =

1
ν
− 1

ν

Φ(ν)
1−Φ(ν) , but this might not be helpful.

Alternatively, in cosmology, the ratio e−ν
2
/2

√
2π(1−Φ(ν)) is often approximated as ν, leading to:

beff ≈
1

σ
√
2π

e−ν
2/2
+ b(1 + ν2

)
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But this is just an approximation and may not be accurate.
Given the complexity of the integral and the expressions involved, it might be more practical to accept that
beff is a function of both b and σ, and express it in terms of the cumulative distribution function and the
probability density function of the standard normal distribution.
Therefore, the final expression for beff is:

beff =
1

σ
√
2π

e−ν
2/2
+ b
⎛

⎝
1 +

e−ν
2/2

√
2π(1 −Φ(ν))

⎞

⎠

Where ν = −1/(bσ).
This is the most simplified form we can achieve analytically.
Part 2: Implementing the Solution in Python
Now that we have derived the mathematical expression for the effective bias beff, we will implement this in
Python. We need to ensure that the code is self-contained and uses standard Python libraries for mathematical
operations.
Final Solution Code
To implement the derived formula for beff, we will use the math and scipy libraries for mathematical functions
and the cumulative distribution function (CDF) of the standard normal distribution, respectively.

import math

from scipy.stats import norm

def b_eff(sigma: float , b_in: float) -> float:

nu = -1 / (b_in * sigma)

pdf_term = math.exp(-0.5 * nu **2) / (sigma * math.sqrt(2 * math.pi))

cdf_term = norm.sf(nu) # Survival function , which is 1 - Phi(nu)

bias_eff = pdf_term + b_in * (1 + math.exp(-0.5 * nu **2) / (math.sqrt(2 * math.pi

) * cdf_term))

return bias_eff

Explanation
1. Mathematical Expression: - We derived the expression for the effective bias beff based on the bare bias
bin and the variance σ of the matter density field. - The expression involves the standard normal probability
density function (PDF) and the survival function (SF), which is 1 − Φ(ν), where Φ(ν) is the cumulative
distribution function (CDF) of the standard normal distribution.
2. Implementation: - We use the math library for exponential and square root functions. - The
scipy.stats.norm.sf function is used to compute the survival function of the standard normal distribution.
- The function beffcalculatesbeff by plugging in the values of σ and bin into the derived formula.
This approach ensures that the solution is both mathematically sound and computationally efficient, providing
a direct way to evaluate the effective bias given the specified parameters.
Verification Results:

Auto verification result ([’2025-02-18T05:49:40.233811+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:58:06.706312Z) Grade: C
Notes: The submitted solution demonstrates a basic understanding of the problem and attempts to derive
the effective bias using mathematical reasoning. However, it contains significant issues: the derivation is
overly complex and does not align with the standard solution’s final expression for the bias. The submitted
solution does not correctly simplify the integrals or relate them to the standard solution’s expression for the

bias b′ =
bΦ1( 1

∣b∣σ
)

Φ1( 1
∣b∣σ
)+∣b∣σϕ1( 1

∣b∣σ
)
. The Python implementation, while correctly structured, is based on an incorrect

mathematical expression. The approach has some merit but lacks the necessary accuracy and alignment with
the standard solution.

Attempt 4 (2025-02-01T07:02:24.820898Z)
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Detailed Solution: To solve this problem, we need to determine the effective bias of the sampled halo field
given the bare bias and the variance in each pixel of the matter density field. We will approach this problem
in two main parts: first, we will use mathematical reasoning to derive a symbolic expression for the effective
bias, and second, we will translate this expression into a Python function.
Part 1: Mathematical Reasoning
Step 1: Understanding the Problem
We are given: - The matter density field δm(x), which is Gaussian. - The halo number density field n(x) =
n̄max(0,1 + bδm(x)), where n̄ is the bare number density and b is the bare bias.
Our goal is to find the effective bias of the sampled halo field, which depends on the bare bias and the variance
of δm(x) in each pixel.
Step 2: Defining Bias
In cosmology, bias describes how the distribution of halos relates to the underlying matter distribution. The
linear bias parameter b relates the halo density contrast to the matter density contrast:

δh(x) = bδm(x)

However, in our problem, the halo number density is given by a nonlinear function involving max(0,1+bδm(x)).
Therefore, we need to compute the effective bias, which accounts for this nonlinearity.
Step 3: Computing the Effective Bias
The effective bias can be defined as the ratio of the halo density contrast to the matter density contrast,
averaged over the field:

beff =
⟨δh⟩

⟨δm⟩

First, we need to express δh in terms of δm.
Given:

n(x) = n̄max(0,1 + bδm(x))

The mean halo density n̄h is:

n̄h = ⟨n(x)⟩ = n̄⟨max(0,1 + bδm(x))⟩

Since δm(x) is Gaussian with mean zero and variance σ2, we can compute the expectation value.
Lets define:

f(x) =max(0,1 + bx)

Then:

⟨f(δm)⟩ = ∫
∞

−∞
f(x)p(x)dx

where p(x) is the Gaussian probability density function:

p(x) =
1

√
2πσ2

e
− x2

2σ2

Step 4: Evaluating the Expectation Value
We need to compute:

⟨max(0,1 + bδm)⟩ = ∫
∞

−∞
max(0,1 + bx)

1
√
2πσ2

e
− x2

2σ2 dx

This integral can be split into two parts:

∫

− 1
b

−∞
0 ⋅ p(x)dx + ∫

∞

− 1
b

(1 + bx)p(x)dx = ∫
∞

− 1
b

(1 + bx)p(x)dx

Lets compute this integral step by step.
First, compute the integral of 1 ⋅ p(x):

∫

∞

− 1
b

p(x)dx = 1 −Φ(−
1

bσ
)
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where Φ is the cumulative distribution function (CDF) of the standard normal distribution.
Next, compute the integral of bxp(x):

b∫
∞

− 1
b

xp(x)dx

Using the property of the Gaussian integral:

∫

∞

−∞
xp(x)dx = 0

Thus:

∫

∞

− 1
b

xp(x)dx = −∫
− 1

b

−∞
xp(x)dx

We can compute this using integration by parts or recognizing it as related to the expectation of a truncated
normal distribution.
Alternatively, we can use the fact that for a Gaussian variable x with mean 0 and variance σ2:

∫

∞

a
xp(x)dx = σ2ϕ(

a

σ
) + a [1 −Φ(

a

σ
)]

where ϕ is the probability density function (PDF) of the standard normal distribution.
In our case, a = − 1

b
:

∫

∞

− 1
b

xp(x)dx = σ2ϕ(−
1

bσ
) + (−

1

b
) [1 −Φ(−

1

bσ
)]

Simplify:

= σ2ϕ(−
1

bσ
) −

1

b
[1 −Φ(−

1

bσ
)]

Since ϕ(−z) = ϕ(z) and Φ(−z) = 1 −Φ(z):

= σ2ϕ(
1

bσ
) −

1

b
Φ(

1

bσ
)

Putting it all together:

⟨max(0,1 + bδm)⟩ = [1 −Φ(−
1

bσ
)] + b [σ2ϕ(

1

bσ
) −

1

b
Φ(

1

bσ
)]

Simplify:

= 1 −Φ(−
1

bσ
) + bσ2ϕ(

1

bσ
) −Φ(

1

bσ
)

Note that Φ(−z) = 1 −Φ(z), so:

1 −Φ(−
1

bσ
) = Φ(

1

bσ
)

Thus:

⟨max(0,1 + bδm)⟩ = Φ(
1

bσ
) + bσ2ϕ(

1

bσ
) −Φ(

1

bσ
) = bσ2ϕ(

1

bσ
)

Wait, this simplification seems incorrect because the Φ terms cancel out, leaving only bσ2ϕ ( 1
bσ
). However,

this contradicts the earlier steps. Let’s re-examine the expression:

⟨max(0,1 + bδm)⟩ = [1 −Φ(−
1

bσ
)] + b [σ2ϕ(

1

bσ
) −

1

b
Φ(

1

bσ
)]

Substitute Φ(−z) = 1 −Φ(z):

= Φ(
1

bσ
) + bσ2ϕ(

1

bσ
) −Φ(

1

bσ
) = bσ2ϕ(

1

bσ
)

This suggests that:
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⟨max(0,1 + bδm)⟩ = bσ
2ϕ(

1

bσ
)

But this seems inconsistent because for b = 0, the expression is undefined, whereas intuitively, for b = 0,
n(x) = n̄max(0,1) = n̄, so n̄h = n̄. This indicates a mistake in the simplification.
Let’s correct this step:
Actually, from:

⟨max(0,1 + bδm)⟩ = [1 −Φ(−
1

bσ
)] + b [σ2ϕ(

1

bσ
) −

1

b
Φ(

1

bσ
)]

Substitute Φ(−z) = 1 −Φ(z):

= Φ(
1

bσ
) + bσ2ϕ(

1

bσ
) −Φ(

1

bσ
) = bσ2ϕ(

1

bσ
)

Wait, this still holds mathematically, but it contradicts the intuition for b = 0. The issue might be in the
assumption that δm has zero mean and variance σ2, and the expression needs to be handled carefully for
small b.
Alternatively, perhaps there is a mistake in the integral calculation. Let’s re-examine the integral:

⟨max(0,1 + bδm)⟩ = ∫
∞

− 1
b

(1 + bx)p(x)dx

Lets compute this integral directly:

= ∫

∞

− 1
b

1 ⋅ p(x)dx + b∫
∞

− 1
b

xp(x)dx

We already have:

∫

∞

− 1
b

p(x)dx = Φ(
1

bσ
)

And:

∫

∞

− 1
b

xp(x)dx = σ2ϕ(
1

bσ
) + (−

1

b
) [1 −Φ(

1

bσ
)]

Therefore:

⟨max(0,1 + bδm)⟩ = Φ(
1

bσ
) + b [σ2ϕ(

1

bσ
) −

1

b
(1 −Φ(

1

bσ
))]

Simplify the expression inside the brackets:

= Φ(
1

bσ
) + bσ2ϕ(

1

bσ
) − (1 −Φ(

1

bσ
))

Combine like terms:

= Φ(
1

bσ
) − 1 +Φ(

1

bσ
) + bσ2ϕ(

1

bσ
)

= 2Φ(
1

bσ
) − 1 + bσ2ϕ(

1

bσ
)

This seems to be a more accurate expression for ⟨max(0,1 + bδm)⟩.
Step 5: Halo Density Contrast
The halo density contrast δh is defined as:

δh =
n − n̄h

n̄h

Given that n = n̄max(0,1 + bδm), and n̄h = n̄⟨max(0,1 + bδm)⟩, we have:

δh =
n̄max(0,1 + bδm) − n̄h

n̄h
=
max(0,1 + bδm) − ⟨max(0,1 + bδm)⟩

⟨max(0,1 + bδm)⟩

Step 6: Effective Bias
The effective bias beff is the ratio of the mean halo density contrast to the mean matter density contrast:
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beff =
⟨δh⟩

⟨δm⟩

Given that ⟨δm⟩ = 0 (since δm is centered around zero), this definition seems problematic because it would
involve division by zero. This suggests that we need a different approach to define and compute the effective
bias.
An alternative definition of bias in cosmology is the ratio of the halo density contrast to the matter density
contrast in Fourier space or in terms of their cross-correlation. However, for simplicity, we can consider the
linear bias relation in real space:

δh = beffδm

To find beff, we can take the expectation value of both sides:

⟨δh⟩ = beff⟨δm⟩

Again, since ⟨δm⟩ = 0, this doesn’t help directly. Instead, we can consider the cross-correlation between δh
and δm:

beff =
⟨δhδm⟩

⟨δ2m⟩

Given that ⟨δ2m⟩ = σ
2, we need to compute ⟨δhδm⟩.

From the expression for δh:

δh =
max(0,1 + bδm) − ⟨max(0,1 + bδm)⟩

⟨max(0,1 + bδm)⟩

Thus:

⟨δhδm⟩ = ⟨
(max(0,1 + bδm) − ⟨max(0,1 + bδm)⟩) δm

⟨max(0,1 + bδm)⟩
⟩

=
1

⟨max(0,1 + bδm)⟩
⟨(max(0,1 + bδm) − ⟨max(0,1 + bδm)⟩) δm⟩

Since ⟨max(0,1 + bδm)⟩ is a constant, this simplifies to:

=
⟨max(0,1 + bδm)δm⟩ − ⟨max(0,1 + bδm)⟩⟨δm⟩

⟨max(0,1 + bδm)⟩

Given that ⟨δm⟩ = 0, this further simplifies to:

⟨δhδm⟩ =
⟨max(0,1 + bδm)δm⟩

⟨max(0,1 + bδm)⟩

Now, we need to compute ⟨max(0,1 + bδm)δm⟩.
Step 7: Computing ⟨max(0,1 + bδm)δm⟩
Similar to before, we can write:

⟨max(0,1 + bδm)δm⟩ = ∫
∞

−∞
max(0,1 + bx)xp(x)dx

Again, split the integral at x = − 1
b
:

∫

− 1
b

−∞
0 ⋅ xp(x)dx + ∫

∞

− 1
b

(1 + bx)xp(x)dx = ∫
∞

− 1
b

(x + bx2
)p(x)dx

This integral can be split into two parts:

∫

∞

− 1
b

xp(x)dx + b∫
∞

− 1
b

x2p(x)dx

We already have expressions for these integrals.
First, ∫

∞
− 1

b
xp(x)dx:

∫

∞

− 1
b

xp(x)dx = σ2ϕ(
1

bσ
) −

1

b
Φ(

1

bσ
)
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Second, ∫
∞
− 1

b
x2p(x)dx:

We know that:

∫

∞

−∞
x2p(x)dx = σ2

Thus:

∫

∞

− 1
b

x2p(x)dx = σ2
− ∫

− 1
b

−∞
x2p(x)dx

The integral ∫
− 1

b
−∞ x2p(x)dx can be computed using integration by parts or recognizing it as the second moment

of the truncated normal distribution.
Alternatively, we can use the fact that for a Gaussian variable x with mean 0 and variance σ2:

∫

∞

a
x2p(x)dx = σ2

[1 −Φ(
a

σ
)] + aϕ(

a

σ
)

In our case, a = − 1
b
:

∫

∞

− 1
b

x2p(x)dx = σ2
[1 −Φ(−

1

bσ
)] + (−

1

b
)ϕ(−

1

bσ
)

Simplify using Φ(−z) = 1 −Φ(z) and ϕ(−z) = ϕ(z):

= σ2Φ(
1

bσ
) −

1

b
ϕ(

1

bσ
)

Putting it all together:

⟨max(0,1 + bδm)δm⟩ = (σ
2ϕ(

1

bσ
) −

1

b
Φ(

1

bσ
)) + b(σ2Φ(

1

bσ
) −

1

b
ϕ(

1

bσ
))

Simplify:

= σ2ϕ(
1

bσ
) −

1

b
Φ(

1

bσ
) + bσ2Φ(

1

bσ
) − ϕ(

1

bσ
)

= (σ2
− 1)ϕ(

1

bσ
) + (bσ2

−
1

b
)Φ(

1

bσ
)

Step 8: Final Expression for Effective Bias
Recall that:

beff =
⟨δhδm⟩

⟨δ2m⟩
=
⟨δhδm⟩

σ2

And:

⟨δhδm⟩ =
⟨max(0,1 + bδm)δm⟩

⟨max(0,1 + bδm)⟩

Therefore:

beff =
(σ2
− 1)ϕ ( 1

bσ
) + (bσ2

− 1
b
)Φ ( 1

bσ
)

σ2⟨max(0,1 + bδm)⟩

From earlier, we have:

⟨max(0,1 + bδm)⟩ = 2Φ(
1

bσ
) − 1 + bσ2ϕ(

1

bσ
)

Thus, the effective bias is:

beff =
(σ2
− 1)ϕ ( 1

bσ
) + (bσ2

− 1
b
)Φ ( 1

bσ
)

σ2 [2Φ ( 1
bσ
) − 1 + bσ2ϕ ( 1

bσ
)]

This is the symbolic expression for the effective bias in terms of the bare bias b and the variance σ2.
Part 2: Python Implementation
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Now, we will implement this expression in Python. We need to define a function
beff(sigma, bin)thatcomputestheeffectivebiasgiventhevarianceσ2 and the bare bias b.
We will use the scipy.stats module for the Gaussian CDF (norm.cdf) and PDF (norm.pdf).
Final Solution Code

import numpy as np

from scipy.stats import norm

def b_eff(sigma: float , b_in: float) -> float:

z = 1 / (b_in * sigma)

phi_z = norm.pdf(z)

Phi_z = norm.cdf(z)

numerator = (sigma **2 - 1) * phi_z + (b_in * sigma ** 2 - 1 / b_in) * Phi_z

denominator = sigma ** 2 * (2 * Phi_z - 1 + b_in * sigma **2 * phi_z)

return numerator / denominator

Explanation
1. Mathematical Derivation: - We started by understanding the relationship between the halo number
density and the matter density field. - We computed the expectation value of the halo number density and
the cross-correlation with the matter density field. - Using properties of Gaussian integrals, we derived an
expression for the effective bias in terms of the bare bias and the variance of the matter density field.
2. Python Implementation: - We translated the derived mathematical expression into a Python function. -
We used the norm.pdf and norm.cdf functions from scipy.stats to compute the Gaussian PDF and CDF, respec-
tively. - The function befftakesthevariancesigmaandthebarebiasbinasinputsandreturnstheeffectivebias.
Verification Results:

Auto verification result ([’2025-02-18T05:49:40.235927+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:58:17.064307Z) Grade: C
Notes: The submitted solution demonstrates a basic understanding of the problem and attempts to derive the
effective bias using mathematical reasoning. However, there are significant issues in the derivation process.
The solution contains errors in the simplification of integrals and the handling of Gaussian distributions,
leading to incorrect expressions for the effective bias. The final expression for the effective bias does not

match the standard solution, which is given by b
′

=
bΦ1( 1

∣b∣σ
)

Φ1( 1
∣b∣σ
)+∣b∣σϕ1( 1

∣b∣σ
)
. The Python implementation is based

on the incorrect mathematical derivation, further compounding the errors. The approach has some merit,
but the execution is flawed.

Attempt 5 (2025-02-01T07:04:52.296302Z)

Detailed Solution: To solve this problem, we need to determine the effective bias of the sampled halo field
given the bare bias and the variance in each pixel of the matter density field. We will approach this problem
in two main parts: first, we will use mathematical reasoning to derive a symbolic expression for the effective
bias, and second, we will translate this expression into a Python function.
Part 1: Mathematical Reasoning
Step 1: Understanding the Problem
We are given: - The matter density field, δm(x), which is Gaussian. - The halo number density field,
n(x) = n̄max(0,1 + bδm(x)), where n̄ is the bare number density and b is the bare bias.
Our goal is to find the effective bias of the sampled halo field, which depends on the bare bias and the variance
of δm(x) in each pixel.
Step 2: Defining Bias
In cosmology, bias describes how halos trace the underlying matter density. The bias parameter relates the
halo density contrast to the matter density contrast.
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The effective bias, beff, can be defined as the ratio of the cross-power spectrum of halos and matter to the
power spectrum of matter.
However, for this problem, we will consider a simpler approach by relating the mean halo density to the
matter density.
Step 3: Mean Halo Density
First, we need to find the mean halo density, ⟨n(x)⟩.
Given:

n(x) = n̄max(0,1 + bδm(x))

Since δm(x) is Gaussian with mean 0 and variance σ2, we need to compute:

⟨n(x)⟩ = n̄⟨max(0,1 + bδm(x))⟩

Step 4: Expectation of max(0,1 + bδm(x))
Let X = bδm(x). Since δm(x) is Gaussian with mean 0 and variance σ2, X is Gaussian with mean 0 and
variance b2σ2.
We need to compute:

⟨max(0,1 +X)⟩

For a Gaussian random variable X with mean µ and variance σ2
X , the expectation of max(0, a +X) is:

⟨max(0, a +X)⟩ = aΦ(
a − µ

σX
) + σXϕ(

a − µ

σX
)

where Φ is the cumulative distribution function (CDF) and ϕ is the probability density function (PDF) of
the standard normal distribution.
In our case, a = 1, µ = 0, and σX = bσ.
Thus:

⟨max(0,1 +X)⟩ = 1 ⋅Φ(
1 − 0

bσ
) + bσϕ(

1 − 0

bσ
)

= Φ(
1

bσ
) + bσϕ(

1

bσ
)

Step 5: Mean Halo Density
Therefore, the mean halo density is:

⟨n(x)⟩ = n̄ [Φ(
1

bσ
) + bσϕ(

1

bσ
)]

Step 6: Bias Definition
The bias is often defined as the ratio of the halo density contrast to the matter density contrast.
The density contrast for halos is:

δh(x) =
n(x) − ⟨n(x)⟩

⟨n(x)⟩

The density contrast for matter is:
δm(x)

Thus, the bias beff is:

beff =
⟨δh(x)δm(x)⟩

⟨δ2m(x)⟩

Step 7: Computing beff
First, compute ⟨δh(x)δm(x)⟩:

⟨δh(x)δm(x)⟩ = ⟨(
n(x) − ⟨n(x)⟩

⟨n(x)⟩
) δm(x)⟩

=
1

⟨n(x)⟩
⟨(n(x) − ⟨n(x)⟩) δm(x)⟩

=
1

⟨n(x)⟩
(⟨n(x)δm(x)⟩ − ⟨n(x)⟩⟨δm(x)⟩)

=
1

⟨n(x)⟩
(⟨n(x)δm(x)⟩ − ⟨n(x)⟩ ⋅ 0)
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=
⟨n(x)δm(x)⟩

⟨n(x)⟩

Now, compute ⟨n(x)δm(x)⟩:

⟨n(x)δm(x)⟩ = n̄⟨max(0,1 + bδm(x))δm(x)⟩

Lets compute ⟨max(0,1 +X)X⟩, where X = bδm(x), which is Gaussian with mean 0 and variance b2σ2.
For a Gaussian random variable X with mean µ and variance σ2

X , the expectation of max(0, a +X)X is:

⟨max(0, a +X)X⟩ = µΦ(
a − µ

σX
) + σ2

Xϕ(
a − µ

σX
)

In our case, a = 1, µ = 0, and σX = bσ:

⟨max(0,1 +X)X⟩ = 0 ⋅Φ(
1 − 0

bσ
) + (bσ)2ϕ(

1 − 0

bσ
)

= b2σ2ϕ(
1

bσ
)

Therefore:

⟨n(x)δm(x)⟩ = n̄ ⋅ b
2σ2ϕ(

1

bσ
)

Thus:

⟨δh(x)δm(x)⟩ =
n̄b2σ2ϕ ( 1

bσ
)

n̄ [Φ ( 1
bσ
) + bσϕ ( 1

bσ
)]
=

b2σ2ϕ ( 1
bσ
)

Φ ( 1
bσ
) + bσϕ ( 1

bσ
)

Next, ⟨δ2m(x)⟩ = σ
2.

Therefore, the effective bias is:

beff =
⟨δh(x)δm(x)⟩

⟨δ2m(x)⟩
=

b2σ2ϕ( 1
bσ
)

Φ( 1
bσ
)+bσϕ( 1

bσ
)

σ2
=

b2ϕ ( 1
bσ
)

Φ ( 1
bσ
) + bσϕ ( 1

bσ
)

Step 8: Simplifying the Expression
Lets define z = 1

bσ
. Then:

beff =
b2ϕ(z)

Φ(z) + bσϕ(z)
=

b2ϕ(z)

Φ(z) + 1
z
ϕ(z)

Since bσ = 1
z
, we have:

beff =
b2ϕ(z)

Φ(z) + 1
z
ϕ(z)

This is the expression for the effective bias in terms of the bare bias b and the variance σ2.
Part 2: Implementing the Solution in Python
Now that we have the mathematical expression for the effective bias, we can implement it in Python. We will
use the scipy.stats module for the Gaussian CDF and PDF functions.
Final Solution Code
To solve this problem, we need to calculate the effective bias of the sampled halo field given the bare bias and
the variance in each pixel of the matter density field. The solution involves using the properties of Gaussian
distributions and their cumulative distribution function (CDF) and probability density function (PDF).
Final Solution To calculate the effective bias of the sampled halo field, we use the following steps:
1. Mathematical Derivation: - We start by understanding the relationship between the halo number
density and the matter density field. - We compute the mean halo density and the cross-correlation between
the halo and matter density fields. - Using these, we derive an expression for the effective bias in terms of
the bare bias and the variance of the matter density field.
2. Implementation in Python: - We implement the derived mathematical expression using standard
Python libraries such as scipy.stats for computing the Gaussian CDF and PDF.
Solution Code
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import scipy.stats as stats

def b_eff(sigma: float , b_in: float) -> float:

z = 1 / (b_in * sigma)

phi_z = stats.norm.pdf(z)

Phi_z = stats.norm.cdf(z)

b_eff = (b_in **2 * phi_z) / (Phi_z + (1 / z) * phi_z)

return b_eff

Explanation
1. Mathematical Expression: - We derived the effective bias using the properties of Gaussian distributions.
- The expression for effective bias is:

beff =
b2ϕ(z)

Φ(z) + 1
z
ϕ(z)

where z = 1
bσ

, ϕ(z) is the standard normal PDF, and Φ(z) is the standard normal CDF.
2. Python Function: - The function befftakesthevariancesigmaandthebarebiasbinasinputs. −
Itcalculatesz and uses scipy.stats.norm.pdf and scipy.stats.norm.cdf to compute ϕ(z) and Φ(z), respectively.
- Finally, it computes and returns the effective bias using the derived formula.
Verification Results:

Auto verification result ([’2025-02-18T05:49:40.238012+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:58:25.430812Z) Grade: A
Notes: The submitted solution correctly follows the standard solution’s approach to derive the effective bias
of the sampled halo field. It accurately uses the properties of Gaussian distributions to compute the mean
halo density and the cross-correlation between the halo and matter density fields. The final expression for

the effective bias, beff =
b2ϕ(z)

Φ(z)+ 1
z
ϕ(z) , is mathematically equivalent to the standard solution’s expression for b′.

The Python implementation is also consistent with the derived mathematical expression, using scipy.stats for
the Gaussian CDF and PDF calculations. Overall, the solution demonstrates a clear understanding of the
problem and provides a correct and complete answer.
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2.2.9 Model: chatgpt-4o-latest

Attempt 1 (2025-02-02T04:08:05.220375Z)

Detailed Solution: Step 1: Understand the Problem
We are tasked with deriving the effective bias beff of a sampled halo field n(x), which is defined as:

n(x) = n̄max(0,1 + bδm(x)),

where: - n̄ is the bare number density (a constant), - b is the bare bias (a constant), - δm(x) is the Gaussian
matter density field.
The effective bias beff is defined as the ratio of the cross-correlation between the halo field n(x) and the matter
density field δm(x) to the auto-correlation of the matter density field:

beff =
⟨n(x)δm(x)⟩

⟨δ2m(x)⟩
.

We aim to derive beff in terms of the bare bias b and the variance of the matter density field σ2
= ⟨δ2m(x)⟩.

—
Step 2: Derive the Effective Bias
2.1: Expression for n(x) The halo number density field is given by:

n(x) = n̄max(0,1 + bδm(x)).

This can be rewritten as:

n(x) =

⎧⎪⎪
⎨
⎪⎪⎩

n̄(1 + bδm(x)), if 1 + bδm(x) > 0,

0, otherwise.

2.2: Expectation Values To compute beff, we need the expectation values ⟨n(x)δm(x)⟩ and ⟨δ
2
m(x)⟩.

1. Variance of the matter density field: By definition, the variance of δm(x) is:

⟨δ2m(x)⟩ = σ
2.

2. Cross-correlation term ⟨n(x)δm(x)⟩: Using the definition of n(x), we write:

⟨n(x)δm(x)⟩ = n̄⟨max(0,1 + bδm(x))δm(x)⟩.

Let z = δm(x), which is a Gaussian random variable with mean 0 and variance σ2. The probability density
function (PDF) of z is:

P (z) =
1

√
2πσ2

exp(−
z2

2σ2
) .

The term max(0,1 + bz) introduces a cutoff at z = −1/b. Thus, we split the integral into two regions:

⟨n(x)δm(x)⟩ = n̄∫
∞

−1/b
(1 + bz)zP (z)dz.

Substituting P (z), we have:

⟨n(x)δm(x)⟩ = n̄∫
∞

−1/b
(1 + bz)z

1
√
2πσ2

exp(−
z2

2σ2
)dz.

Expanding the integrand:

⟨n(x)δm(x)⟩ = n̄ [∫
∞

−1/b
z

1
√
2πσ2

exp(−
z2

2σ2
)dz + b∫

∞

−1/b
z2

1
√
2πσ2

exp(−
z2

2σ2
)dz] .

The first term vanishes because the Gaussian is symmetric about zero, and the integral is over an odd function.
Thus:

⟨n(x)δm(x)⟩ = n̄b∫
∞

−1/b
z2

1
√
2πσ2

exp(−
z2

2σ2
)dz.

The integral can be expressed in terms of the complementary error function, but for simplicity, we approximate
it numerically.
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2.3: Effective Bias The effective bias is:

beff =
⟨n(x)δm(x)⟩

⟨δ2m(x)⟩
.

Substituting ⟨δ2m(x)⟩ = σ
2, we get:

beff =
n̄b ∫

∞
−1/b z

2 1√
2πσ2

exp (− z2

2σ2 )dz

σ2
.

—
Step 3: Python Code Implementation
The integral in the numerator can be computed numerically using Python’s scipy.integrate.quad function.
Below is the Python implementation.

import numpy as np

from scipy.integrate import quad

Define the effective bias function

def b_eff(sigma: float , b_in: float) -> float:

# Define the integrand for the numerator

def integrand(z, sigma , b_in):

return z**2 * (1 / np.sqrt(2 * np.pi * sigma ** 2)) * np.exp(-z ** 2 / (2 * sigma

**2))

# Compute the integral from -1/b_in to infinity

integral , _ = quad(integrand , -1/b_in , np.inf , args=(sigma , b_in))

# Compute the effective bias

b_eff_value = b_in * integral / sigma **2

return b_eff_value

—
Final Answer: The effective bias beff is given by:

beff =
n̄b ∫

∞
−1/b z

2 1√
2πσ2

exp (− z2

2σ2 )dz

σ2
.

Python implementation:

import numpy as np

from scipy.integrate import quad

Define the effective bias function

def b_eff(sigma: float , b_in: float) -> float:

# Define the integrand for the numerator

def integrand(z, sigma , b_in):

return z**2 * (1 / np.sqrt(2 * np.pi * sigma ** 2)) * np.exp(-z ** 2 / (2 * sigma

**2))

# Compute the integral from -1/b_in to infinity

integral , _ = quad(integrand , -1/b_in , np.inf , args=(sigma , b_in))

# Compute the effective bias

b_eff_value = b_in * integral / sigma **2

return b_eff_value

Verification Results:

Auto verification result ([’2025-02-18T05:49:40.244916+00:00’]) Status: Incorrect

Evaluations:
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Evaluated by gpt-4o (2025-02-04T00:58:34.217214Z) Grade: C
Notes: The submitted solution demonstrates a basic understanding of the problem by attempting to derive
the effective bias beff using the given halo number density field n(x). However, there are significant issues.
The approach does not align with the standard solution, which involves calculating the bias b′ using the
correlation functions and expectations of Gaussian random variables. The submitted solution focuses on a
different method involving numerical integration, which is not equivalent to the standard solution’s analytical
approach. Additionally, the final expression for beff is not equivalent to the standard solution’s expression for
b′. The submitted solution lacks the necessary steps to connect the real-space correlation functions to the
Fourier-transformed quantities and does not address the Taylor expansion or the simplifications used in the
standard solution.

Attempt 2 (2025-02-02T04:08:26.688625Z)

Detailed Solution: Step 1: Understand the Problem We are tasked with deriving the effective bias beff of a
sampled halo field n(x), given the underlying Gaussian matter density field δm(x). The halo number density
field is defined as:

n(x) = n̄max(0,1 + bδm(x)),

where: - n̄ is the bare number density (a constant), - b is the bare bias (a constant), - δm(x) is the Gaussian
matter density field.
The effective bias beff is defined as the ratio of the cross-correlation between the halo field and the matter
field to the variance of the matter field:

beff =
⟨n(x)δm(x)⟩

⟨δ2m(x)⟩
.

We aim to derive a symbolic expression for beff in terms of the bare bias b and the variance of the matter
density field, σ2

= ⟨δ2m(x)⟩.
—
Step 2: Derive the Effective Bias
2.1: Express n(x) in terms of δm(x) The halo number density field is given by:

n(x) = n̄max(0,1 + bδm(x)).

This can be written as:

n(x) =

⎧⎪⎪
⎨
⎪⎪⎩

n̄(1 + bδm(x)), if 1 + bδm(x) > 0,

0, otherwise.

2.2: Cross-correlation term ⟨n(x)δm(x)⟩ The cross-correlation term is:

⟨n(x)δm(x)⟩ = n̄⟨max(0,1 + bδm(x))δm(x)⟩.

Let δm follow a Gaussian distribution with mean µ = 0 and variance σ2. The probability density function of
δm is:

P (δm) =
1

√
2πσ2

exp(−
δ2m
2σ2
) .

The expectation value becomes:

⟨n(x)δm(x)⟩ = n̄∫
∞

−1/b
(1 + bδm)δmP (δm)dδm,

where the lower limit of integration, −1/b, arises from the condition 1 + bδm > 0.
Expanding the integrand:

⟨n(x)δm(x)⟩ = n̄∫
∞

−1/b
δmP (δm)dδm + n̄b∫

∞

−1/b
δ2mP (δm)dδm.

2.3: Variance of the matter field ⟨δ2m(x)⟩ The variance of the matter field is:

⟨δ2m(x)⟩ = σ
2.
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2.4: Solve the integrals 1. First term: The first integral is:

∫

∞

−1/b
δmP (δm)dδm.

Since δmP (δm) is an odd function and the integration limits are asymmetric, this integral evaluates to zero:

∫

∞

−1/b
δmP (δm)dδm = 0.

2. Second term: The second integral is:

∫

∞

−1/b
δ2mP (δm)dδm.

This integral can be split into two parts:

∫

∞

−1/b
δ2mP (δm)dδm = ∫

∞

−∞
δ2mP (δm)dδm − ∫

−1/b

−∞
δ2mP (δm)dδm.

The first term is the total variance:

∫

∞

−∞
δ2mP (δm)dδm = σ

2.

The second term can be computed numerically or approximated for small b.
For simplicity, we approximate:

∫

∞

−1/b
δ2mP (δm)dδm ≈ σ

2.

Thus:
⟨n(x)δm(x)⟩ ≈ n̄bσ

2.

2.5: Effective bias The effective bias is:

beff =
⟨n(x)δm(x)⟩

⟨δ2m(x)⟩
.

Substituting the results:

beff =
n̄bσ2

σ2
= b.

—
Final Answer: The effective bias beff is equal to the bare bias b.
—
Step 3: Python Code Implementation

import numpy as np

def b_eff(sigma: float , b_in: float) -> float:

"""

Compute the effective bias of the sampled halo field.

Parameters :

sigma (float): Variance of the matter density field.

b_in (float): Bare bias.

Returns:

float: Effective bias.

"""

return b_in

This code directly implements the result beff = b.
Verification Results:

Auto verification result ([’2025-02-18T05:49:40.246280+00:00’]) Status: Incorrect

Evaluations:
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Evaluated by gpt-4o (2025-02-04T00:58:41.915928Z) Grade: C
Notes: The submitted solution shows a basic understanding of the problem but has significant issues. The
main flaw is the incorrect conclusion that the effective bias beff is equal to the bare bias b. The standard
solution derives a more complex expression for the bias, involving the cumulative distribution function Φ1

and the probability density function ϕ1. The submitted solution oversimplifies the problem by assuming the
integrals evaluate to σ2 without proper justification, leading to an incorrect final answer. Additionally, the
approach does not account for the non-linearities and approximations discussed in the standard solution.
The Python code implementation is consistent with the submitted solution’s conclusion but is based on the
incorrect assumption that beff = b.

Attempt 3 (2025-02-02T04:08:45.814457Z)

Detailed Solution: Step 1: Understand the Problem We are tasked with deriving the effective bias beff of
a sampled halo field, given the bare bias b, the variance of the matter density field σ2, and the halo number
density field defined as:

n(x) = n̄max(0,1 + bδm(x)),

where: - δm(x) is the Gaussian matter density field with zero mean and variance σ2, - n̄ is the bare number
density (a constant), - b is the bare bias (a constant).
The effective bias beff is defined as the ratio of the cross-correlation between the halo field and the matter
field to the variance of the matter field:

beff =
⟨n(x)δm(x)⟩

⟨δ2m(x)⟩
.

Step 2: Derive the Effective Bias 2.1: Express the Halo Field The halo number density field is given as:

n(x) = n̄max(0,1 + bδm(x)).

This can be rewritten using the Heaviside step function Θ(x), which is defined as:

Θ(x) =

⎧⎪⎪
⎨
⎪⎪⎩

1, x ≥ 0,

0, x < 0.

Thus:
n(x) = n̄(1 + bδm(x))Θ(1 + bδm(x)).

2.2: Compute the Cross-Correlation The cross-correlation ⟨n(x)δm(x)⟩ is:

⟨n(x)δm(x)⟩ = n̄⟨(1 + bδm(x))δm(x)Θ(1 + bδm(x))⟩.

Expanding the term:

⟨n(x)δm(x)⟩ = n̄⟨δm(x)Θ(1 + bδm(x))⟩ + n̄b⟨δ
2
m(x)Θ(1 + bδm(x))⟩.

2.3: Gaussian Statistics and Thresholding The matter density field δm(x) is Gaussian with zero mean and
variance σ2. Let us define the threshold δth = −

1
b
, which arises from the condition 1 + bδm(x) ≥ 0. The

Heaviside function ensures that only values of δm(x) ≥ δth contribute to the averages.
Using the properties of a truncated Gaussian distribution, the relevant moments are: 1. The mean of δm
above the threshold δth:

⟨δmΘ(1 + bδm)⟩ = σ
ϕ(ν)

P (ν)
,

where ν = δth
σ
= − 1

bσ
, ϕ(ν) = 1√

2π
e−ν

2/2 is the Gaussian probability density function, and P (ν) = 1
2
[1 +

erf(ν/
√
2)] is the cumulative distribution function.

2. The second moment of δm above the threshold:

⟨δ2mΘ(1 + bδm)⟩ = σ
2
[1 + ν

ϕ(ν)

P (ν)
] .

2.4: Substitute and Simplify Substitute these results into the expression for ⟨n(x)δm(x)⟩:

⟨n(x)δm(x)⟩ = n̄σ
ϕ(ν)

P (ν)
+ n̄bσ2

[1 + ν
ϕ(ν)

P (ν)
] .
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The variance of δm is ⟨δ2m⟩ = σ
2. Thus, the effective bias is:

beff =
⟨n(x)δm(x)⟩

σ2
.

Substitute the result for ⟨n(x)δm(x)⟩:

beff =
n̄

σ2
[σ

ϕ(ν)

P (ν)
+ bσ2

(1 + ν
ϕ(ν)

P (ν)
)] .

Simplify:

beff = b +
1

σ

ϕ(ν)

P (ν)
(1 + bν) .

Final Answer: The effective bias is:

beff = b +
1

σ

ϕ(ν)

P (ν)
(1 + bν) ,

where ν = − 1
bσ

, ϕ(ν) = 1√
2π

e−ν
2/2, and P (ν) = 1

2
[1 + erf(ν/

√
2)].

—
Step 3: Python Code Implementation Below is the Python implementation of the derived formula.

import math

from scipy.special import erf

def b_eff(sigma: float , b_in: float) -> float:

# Compute nu

nu = -1 / (b_in * sigma)

# Compute phi(nu) = Gaussian PDF

phi_nu = (1 / math.sqrt(2 * math.pi)) * math.exp(-0.5 * nu **2)

# Compute P(nu) = CDF

P_nu = 0.5 * (1 + erf(nu / math.sqrt(2)))

# Compute effective bias

b_eff_value = b_in + (1 / sigma) * (phi_nu / P_nu) * (1 + b_in * nu)

return b_eff_value

This code computes the effective bias beff given the variance σ2 and the bare bias b.
Verification Results:

Auto verification result ([’2025-02-18T05:49:40.247738+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:58:49.546668Z) Grade: C
Notes: The submitted solution shows a basic understanding of the problem and attempts to derive the
effective bias beff. However, there are significant issues in the approach and final expression. The standard
solution derives the bias b′ using the correlation functions and Gaussian statistics, resulting in a different
expression involving the normal cumulative distribution function Φ1 and the standard normal probability
density function ϕ1. The submitted solution uses a different method involving the Heaviside step function
and truncated Gaussian statistics, leading to a different final expression for beff. The discrepancy in the final
expressions indicates a major flaw in the approach or derivation. Additionally, the submitted solution does
not clearly connect the derived expression to the standard solution’s context and assumptions.

Attempt 4 (2025-02-02T04:09:10.382231Z)
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Detailed Solution: Step 1: Understand the Problem We are tasked with deriving the effective bias beff of
a sampled halo field, given that the halo number density field is defined as:

n(x) = n̄max(0,1 + bδm(x)),

where: - n̄ is the mean number density, - b is the bare bias, - δm(x) is the Gaussian matter density field.
The effective bias beff is defined as the ratio of the cross-correlation between the halo field and the matter
field to the auto-correlation of the matter field:

beff =
⟨n(x)δm(x)⟩

⟨δ2m(x)⟩
.

Step 2: Derive the Effective Bias Symbolically
2.1: Express n(x) in terms of δm(x) The halo number density field is given by:

n(x) = n̄max(0,1 + bδm(x)).

This can be rewritten as:

n(x) =

⎧⎪⎪
⎨
⎪⎪⎩

n̄(1 + bδm(x)), if 1 + bδm(x) > 0,

0, if 1 + bδm(x) ≤ 0.

2.2: Compute ⟨n(x)δm(x)⟩ The cross-correlation term is:

⟨n(x)δm(x)⟩ = n̄⟨max(0,1 + bδm(x))δm(x)⟩.

Since δm(x) is Gaussian with zero mean and variance σ2
= ⟨δ2m(x)⟩, we can compute this expectation value

by integrating over the Gaussian distribution:

P (δm) =
1

√
2πσ2

exp(−
δ2m
2σ2
) .

The expectation value becomes:

⟨n(x)δm(x)⟩ = n̄∫
∞

−1/b
(1 + bδm)δm

1
√
2πσ2

exp(−
δ2m
2σ2
)dδm.

2.3: Simplify the Integral Split the term (1 + bδm)δm into two parts:

⟨n(x)δm(x)⟩ = n̄∫
∞

−1/b
δm

1
√
2πσ2

exp(−
δ2m
2σ2
)dδm + n̄b∫

∞

−1/b
δ2m

1
√
2πσ2

exp(−
δ2m
2σ2
)dδm.

1. First Term: The first integral is proportional to the mean of δm over the truncated Gaussian distribution.
Since δm is symmetric about zero, this term vanishes:

∫

∞

−1/b
δmP (δm)dδm = 0.

2. Second Term: The second integral involves δ2m. For a truncated Gaussian, this can be computed as:

∫

∞

−1/b
δ2mP (δm)dδm = σ

2
[1 +

bϕ(−1/(bσ))

Φ(1/(bσ))
] ,

where ϕ(x) = 1√
2π

e−x
2/2 is the standard Gaussian probability density function, and Φ(x) is the cumulative

distribution function of the standard Gaussian.
Thus:

⟨n(x)δm(x)⟩ = n̄bσ
2
[1 +

bϕ(−1/(bσ))

Φ(1/(bσ))
] .

2.4: Compute ⟨δ2m(x)⟩ The auto-correlation of the matter field is simply the variance:

⟨δ2m(x)⟩ = σ
2.

2.5: Compute beff The effective bias is:

beff =
⟨n(x)δm(x)⟩

⟨δ2m(x)⟩
.
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Substituting the results:

beff = b [1 +
bϕ(−1/(bσ))

Φ(1/(bσ))
] .

Final Answer:

beff = b [1 +
bϕ(−1/(bσ))

Φ(1/(bσ))
] .

—
Step 3: Convert the Expression into Python Code
Below is the Python implementation of the derived formula:

import math

from scipy.stats import norm

Function to compute the effective bias

def b_eff(sigma: float , b_in: float) -> float:

"""

Compute the effective bias of the sampled halo field.

Parameters :

sigma (float): Standard deviation of the matter density field.

b_in (float): Bare bias.

Returns:

float: Effective bias.

"""

# Compute the argument for the Gaussian functions

x = -1 / (b_in * sigma)

# Compute the PDF and CDF of the standard normal distribution

phi = norm.pdf(x) # Standard Gaussian PDF

Phi = norm.cdf(-x) # Standard Gaussian CDF

# Compute the effective bias

b_eff_value = b_in * (1 + b_in * phi / Phi)

return b_eff_value

This code uses the scipy.stats.norm module to compute the Gaussian PDF (ϕ) and CDF (Φ). It takes the
standard deviation σ and the bare bias b as inputs and returns the effective bias beff.
Verification Results:

Auto verification result ([’2025-02-18T05:49:40.249830+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:59:00.653550Z) Grade: C
Notes: The submitted solution demonstrates a basic understanding of the problem and attempts to derive
the effective bias beff. However, there are significant issues in the approach and final expression. The standard
solution derives the bias b′ using a detailed statistical approach involving the correlation functions and expec-
tations of Gaussian random fields. The submitted solution, while correctly identifying the need to compute
cross-correlation and auto-correlation, simplifies the problem incorrectly and arrives at a different expression

for beff. The final expression beff = b [1 +
bϕ(−1/(bσ))
Φ(1/(bσ)) ] does not match the standard solution’s expression for b′,

which is b
′

=
bΦ1( 1

∣b∣σ
)

Φ1( 1
∣b∣σ
)+∣b∣σϕ1( 1

∣b∣σ
)
. The approach lacks the necessary steps to connect the real-space correlation

functions to the Fourier-transformed quantities and the power spectrum, which are crucial in the standard
solution. Additionally, the Python code provided does not align with the correct mathematical derivation as
per the standard solution.

Attempt 5 (2025-02-02T04:09:31.668267Z)
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Detailed Solution: Step 1: Understand the Problem
We are tasked with deriving the effective bias beff of a sampled halo field, given the bare bias b, the variance
of the matter density field σ2, and the halo number density field defined as:

n(x) = n̄max(0,1 + bδm(x)),

where: - δm(x) is the Gaussian matter density field, - n̄ is the bare number density, - b is the bare bias.
The effective bias beff is defined as the ratio of the cross-correlation of the halo field with the matter density
field to the variance of the matter density field:

beff =
⟨n(x)δm(x)⟩

⟨δ2m(x)⟩
.

Step 2: Derive the Effective Bias
2.1 Express the Halo Field The halo number density field is given by:

n(x) = n̄max(0,1 + bδm(x)).

The max(0, ⋅) function ensures that the number density is non-negative. This introduces a nonlinearity into
the problem.
2.2 Cross-Correlation Term The numerator of beff is the cross-correlation between n(x) and δm(x):

⟨n(x)δm(x)⟩ = n̄⟨max(0,1 + bδm(x))δm(x)⟩.

2.3 Variance of the Matter Density Field The denominator of beff is the variance of the matter density field:

⟨δ2m(x)⟩ = σ
2,

where σ2 is the variance of the Gaussian field δm(x).
2.4 Simplify the Cross-Correlation Term The Gaussian field δm(x) has a probability density function:

P (δm) =
1

√
2πσ2

exp(−
δ2m
2σ2
) .

The expectation value ⟨max(0,1 + bδm)δm⟩ can be written as:

⟨max(0,1 + bδm)δm⟩ = ∫
∞

−1/b
(1 + bδm)δmP (δm)dδm,

where the lower limit of integration, −1/b, arises because max(0,1 + bδm) is zero for δm < −1/b.
Substituting P (δm), we have:

⟨max(0,1 + bδm)δm⟩ = ∫
∞

−1/b
(1 + bδm)δm

1
√
2πσ2

exp(−
δ2m
2σ2
) dδm.

2.5 Expand the Integral Split the integral into two terms:

⟨max(0,1 + bδm)δm⟩ =
1

√
2πσ2

∫

∞

−1/b
δm exp(−

δ2m
2σ2
) dδm +

b
√
2πσ2

∫

∞

−1/b
δ2m exp(−

δ2m
2σ2
) dδm.

Let us evaluate these integrals separately.

2.6 Integral 1: ∫
∞
−1/b δm exp(−

δ2m
2σ2 ) dδm This integral evaluates to zero because the integrand is an odd function

of δm (symmetric about zero) and the limits of integration are symmetric for the Gaussian distribution.

2.7 Integral 2: ∫
∞
−1/b δ

2
m exp(−

δ2m
2σ2 ) dδm The second integral is proportional to the variance of the Gaussian

field but is truncated at δm = −1/b. Using standard results for truncated Gaussian integrals, the result is:

∫

∞

−1/b
δ2m exp(−

δ2m
2σ2
) dδm = σ

2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 +
1
√
2π

exp (− (1/b)
2

2σ2 )

erfc (− 1√
2bσ
)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

where erfc(x) is the complementary error function.
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2.8 Final Expression for beff Substituting the results into the expression for beff, we find:

beff = b

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 +
1
√
2π

exp (− (1/b)
2

2σ2 )

erfc (− 1√
2bσ
)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Final Answer:

beff = b

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 +
1
√
2π

exp (− (1/b)
2

2σ2 )

erfc (− 1√
2bσ
)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

—
Step 3: Python Code Implementation
Below is the Python implementation of the derived formula:

import numpy as np

from scipy.special import erfc

Function to compute the effective bias

def b_eff(sigma: float , b_in: float) -> float:

# Compute the exponential term

exp_term = np.exp(-(1 / b_in)**2 / (2 * sigma **2))

# Compute the complementary error function term

erfc_term = erfc(-1 / (np.sqrt(2) * b_in * sigma))

# Compute the effective bias

b_eff_value = b_in * (1 + (1 / np.sqrt(2 * np.pi)) * (exp_term / erfc_term))

return b_eff_value

This code computes beff given the variance σ2 and the bare bias b.
Verification Results:

Auto verification result ([’2025-02-18T05:49:40.251285+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o (2025-02-04T00:59:08.767092Z) Grade: C
Notes: The submitted solution shows a basic understanding of the problem and attempts to derive the effective
bias beff. However, there are significant issues in the approach and final expression. The standard solution
derives the bias b′ using the correlation functions and expectations of Gaussian random fields, resulting in
an expression involving the normal cumulative distribution function Φ1 and the standard normal probability
density function ϕ1. The submitted solution instead uses the complementary error function erfc and an
exponential term, which is not equivalent to the standard solution’s expression. Additionally, the submitted
solution does not correctly handle the integration limits and the properties of the Gaussian distribution,
leading to an incorrect final expression for beff. The approach has some merit, but the execution and final
result are flawed.
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2.2.10 Model: deepseek-ai/DeepSeek-V3

Attempt 1 (2025-02-06T21:17:32.535420+00:00)

Detailed Solution: Understanding the Problem
We are given a cosmological scenario where the halo number density field n(x) is related to the underlying
Gaussian matter density field δm(x) by the equation:

n(x) = n̄max(0,1 + bδm(x))

Here, n̄ is the bare number density, and b is the bare bias. Our goal is to determine the effective bias beff of
the sampled halo field, which depends on the bare bias b and the variance σ2 of the matter density field in
each pixel.
Devising a Plan
1. Define the Effective Bias: The effective bias beff relates the halo density field to the matter density
field in a linear manner, i.e., δh = beffδm, where δh is the halo density contrast.
2. Express Halo Density Contrast: The halo density contrast δh is given by:

δh(x) =
n(x) − n̄

n̄

3. Substitute the Given Relation: Substitute n(x) into the expression for δh:

δh(x) =
n̄max(0,1 + bδm(x)) − n̄

n̄
=max(0,1 + bδm(x)) − 1

4. Linearize the Relation: To find the effective bias, we need to linearize the relation between δh and δm.
This involves taking the expectation value of δh given δm.
5. Calculate the Expectation: Compute the expectation ⟨δh∣δm⟩ and express it in terms of δm.
6. Determine the Effective Bias: The coefficient of δm in the linearized relation will give us the effective
bias beff.
Carrying Out the Plan
1. Express δh in Terms of δm:

δh(x) =max(0,1 + bδm(x)) − 1

2. Linearize the Relation:
We need to find the expectation ⟨δh∣δm⟩. Since δm is Gaussian with zero mean and variance σ2, we can write:

⟨δh∣δm⟩ = ∫
∞

−∞
(max(0,1 + bδm) − 1)P (δm)dδm

However, since max(0,1 + bδm) is non-zero only when 1 + bδm ≥ 0, i.e., δm ≥ −
1
b
, the integral becomes:

⟨δh∣δm⟩ = ∫
∞

− 1
b

(1 + bδm − 1)P (δm)dδm = b∫
∞

− 1
b

δmP (δm)dδm

3. Evaluate the Integral:
The integral ∫

∞
− 1

b
δmP (δm)dδm is the expectation of δm conditioned on δm ≥ −

1
b
. For a Gaussian distribution,

this can be expressed in terms of the error function.
However, for small σ, we can approximate the integral by considering the linear term in δm:

⟨δh∣δm⟩ ≈ bδm

Thus, the effective bias beff is approximately equal to the bare bias b.
4. Refine the Approximation:
To account for the variance σ2, we need to consider the second-order term in the expansion. The effective
bias can be expressed as:

beff = b(1 −
b2σ2

2
)

This expression accounts for the non-linear effects due to the variance in the matter density field.
Final Answer
The effective bias beff is given by:
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beff = b(1 −
b2σ2

2
)

Python Implementation

def b_eff(sigma: float , b_in: float) -> float:

return b_in * (1 - (b_in **2 * sigma **2) / 2)

This function calculates the effective bias based on the given variance σ and bare bias bin.
Verification Results:

Auto verification result ([’2025-02-18T05:49:40.267696+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o ([’2025-02-07T22:29:42.321456+00:00’]) Grade: C
Notes: The submitted solution shows a basic understanding of the problem and attempts to derive the effective
bias beff. However, it diverges significantly from the standard solution in its approach and final expression.
The standard solution derives b′ using a detailed statistical approach involving Gaussian random fields and
correlation functions, leading to a complex expression involving the normal cumulative distribution function
Φ1 and the standard normal probability density function ϕ1. The submitted solution simplifies the problem

by linearizing the relation and approximating the effective bias as beff = b(1−
b2σ2

2
), which does not match the

standard solution’s final expression. The approach lacks the necessary statistical rigor and does not account
for the detailed steps involving expectations and correlation functions as in the standard solution.

Attempt 2 (2025-02-06T21:18:48.859067+00:00)

Detailed Solution: Understanding the Problem
We are given a cosmological scenario where the halo number density field n(x) is related to the underlying
Gaussian matter density field δm(x) through the equation:

n(x) = n̄max(0,1 + bδm(x))

Here, n̄ is the bare number density, and b is the bare bias. Our goal is to determine the effective bias beff of
the sampled halo field, which depends on the bare bias b and the variance σ2 of the matter density field in
each pixel.
Devising a Plan
To find the effective bias, we need to relate the fluctuations in the halo number density to the fluctuations in
the matter density. The effective bias beff is defined as the ratio of the halo density contrast δh to the matter
density contrast δm:

beff =
δh
δm

Given the relationship n(x) = n̄max(0,1 + bδm(x)), we can express the halo density contrast δh as:

δh =
n(x) − n̄

n̄
=max(0,1 + bδm(x)) − 1

Our task is to compute the expectation value of δh given δm, and then find the ratio beff.
Carrying Out the Plan
1. Express δh in terms of δm:

δh =max(0,1 + bδm) − 1

2. Compute the expectation value ⟨δh⟩:
Since δm is a Gaussian random variable with zero mean and variance σ2, we can write:

⟨δh⟩ = ⟨max(0,1 + bδm) − 1⟩

This expectation value can be computed using the properties of the Gaussian distribution.
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3. Evaluate the expectation value:
The function max(0,1 + bδm) can be split into two cases:
- If 1 + bδm ≥ 0, then max(0,1 + bδm) = 1 + bδm. - If 1 + bδm < 0, then max(0,1 + bδm) = 0.
Therefore, the expectation value becomes:

⟨δh⟩ = ∫
∞

−∞
[max(0,1 + bδm) − 1]P (δm)dδm

where P (δm) is the probability density function of δm, which is Gaussian:

P (δm) =
1

√
2πσ

exp(−
δ2m
2σ2
)

The integral can be split into two parts:

⟨δh⟩ = ∫
−1/b

−∞
(0 − 1)P (δm)dδm + ∫

∞

−1/b
(1 + bδm − 1)P (δm)dδm

Simplifying:

⟨δh⟩ = −∫
−1/b

−∞
P (δm)dδm + b∫

∞

−1/b
δmP (δm)dδm

4. Compute the integrals:
The first integral is the cumulative distribution function (CDF) of the Gaussian distribution evaluated at
−1/b:

∫

−1/b

−∞
P (δm)dδm = Φ(−

1

bσ
)

where Φ is the standard normal CDF.
The second integral can be computed using the properties of the Gaussian distribution:

∫

∞

−1/b
δmP (δm)dδm = σϕ(−

1

bσ
)

where ϕ is the standard normal PDF.
5. Combine the results:

⟨δh⟩ = −Φ(−
1

bσ
) + bσϕ(−

1

bσ
)

6. Compute the effective bias beff:
The effective bias is the ratio of the expectation value of δh to the expectation value of δm. Since ⟨δm⟩ = 0,
we need to consider the covariance between δh and δm:

beff =
⟨δhδm⟩

⟨δ2m⟩

However, given the complexity, we can approximate the effective bias as:

beff ≈
⟨δh⟩

⟨δm⟩

But since ⟨δm⟩ = 0, this approach is not directly applicable. Instead, we can consider the linear response of
δh to δm:

beff =
∂⟨δh⟩

∂δm

Given the expression for ⟨δh⟩, we can differentiate it with respect to δm:

beff = bΦ(
1

bσ
)

where we have used the fact that Φ(−x) = 1 −Φ(x) and ϕ(−x) = ϕ(x).
Final Answer
The effective bias beff is given by:
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beff = bΦ(
1

bσ
)

where Φ is the standard normal cumulative distribution function.
Python Implementation

from scipy.stats import norm

def b_eff(sigma: float , b_in: float) -> float:

"""

Calculate the effective bias of the sampled halo field.

Parameters :

sigma (float): The standard deviation of the matter density field.

b_in (float): The bare bias.

Returns:

float: The effective bias.

"""

return b_in * norm.cdf(1 / (b_in * sigma))

This Python function beffcomputestheeffectivebiasusingthederivedformula.Itusesthenorm.cdffunctionfromthescipy.statsmoduletocomputethestandardnormalcumulativedistributionfunction.
Verification Results:

Auto verification result ([’2025-02-18T05:49:40.269373+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o ([’2025-02-07T22:29:52.972957+00:00’]) Grade: C
Notes: The submitted solution demonstrates a basic understanding of the problem and attempts to derive
the effective bias beff. However, there are significant issues in the approach and final result. The standard

solution derives b
′

using a detailed analysis involving the correlation functions and expectations, leading to the

expression b
′

=
bΦ1( 1

∣b∣σ
)

Φ1( 1
∣b∣σ
)+∣b∣σϕ1( 1

∣b∣σ
)
. The submitted solution simplifies the problem and arrives at beff = bΦ (

1
bσ
),

which is not equivalent to the standard solution. The approach lacks the necessary steps to connect the real-
space correlation functions to the Fourier space and does not correctly handle the expectations and variances
involved. Additionally, the differentiation step to find beff is not justified in the context of the problem, leading
to an incorrect final expression.

Attempt 3 (2025-02-06T21:20:03.559232+00:00)

Detailed Solution: Understanding the Problem
We are given a cosmological scenario where the halo number density field n(x) is related to the underlying
Gaussian matter density field δm(x) by the equation:

n(x) = n̄max(0,1 + bδm(x))

Here, n̄ is the bare number density, and b is the bare bias. Our goal is to determine the effective bias beff of
the sampled halo field, which depends on the bare bias b and the variance σ2 of the matter density field in
each pixel.
Devising a Plan
To find the effective bias, we need to relate the fluctuations in the halo number density to the fluctuations in
the matter density. The effective bias beff is defined as the ratio of the halo density contrast to the matter
density contrast:

beff =
δh
δm

where δh is the halo density contrast. Given the relationship between n(x) and δm(x), we can express δh in
terms of δm.
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Carrying Out the Plan
1. Express the Halo Density Contrast:
The halo density contrast δh is given by:

δh =
n(x) − n̄

n̄

Substituting the expression for n(x):

δh =
n̄max(0,1 + bδm(x)) − n̄

n̄
=max(0,1 + bδm(x)) − 1

2. Simplify the Expression:
Since max(0,1 + bδm(x)) is non-negative, we can write:

δh =

⎧⎪⎪
⎨
⎪⎪⎩

bδm(x) if 1 + bδm(x) ≥ 0

−1 otherwise

However, for small fluctuations δm, the condition 1+ bδm(x) ≥ 0 is typically satisfied, so we can approximate:

δh ≈ bδm(x)

3. Calculate the Effective Bias:
The effective bias beff is then:

beff =
δh
δm
≈ b

However, this is a first-order approximation. To account for the non-linearity introduced by the max function,
we need to consider the expectation value of δh over the distribution of δm.
4. Expectation Value Calculation:
The expectation value of δh is:

⟨δh⟩ = ⟨max(0,1 + bδm) − 1⟩

Since δm is a Gaussian random variable with zero mean and variance σ2, we can write:

⟨δh⟩ = ∫
∞

−∞
(max(0,1 + bδm) − 1)

1
√
2πσ

e
− δ2m

2σ2 dδm

This integral can be split into two parts:

⟨δh⟩ = ∫
−1/b

−∞
(−1)

1
√
2πσ

e
− δ2m

2σ2 dδm + ∫
∞

−1/b
bδm

1
√
2πσ

e
− δ2m

2σ2 dδm

5. Evaluating the Integrals:
The first integral is:

−∫

−1/b

−∞

1
√
2πσ

e
− δ2m

2σ2 dδm = −Φ(−
1

bσ
)

where Φ is the cumulative distribution function (CDF) of the standard normal distribution.
The second integral is:

b∫
∞

−1/b
δm

1
√
2πσ

e
− δ2m

2σ2 dδm = bσϕ(−
1

bσ
)

where ϕ is the probability density function (PDF) of the standard normal distribution.
6. Combining the Results:
Therefore, the expectation value of δh is:

⟨δh⟩ = −Φ(−
1

bσ
) + bσϕ(−

1

bσ
)

The effective bias beff is then:
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beff =
⟨δh⟩

⟨δm⟩
=
−Φ (− 1

bσ
) + bσϕ (− 1

bσ
)

0

However, since ⟨δm⟩ = 0, this approach leads to an indeterminate form. Instead, we consider the ratio of the
variances:

beff =

¿
Á
ÁÀ⟨δ2h⟩

⟨δ2m⟩

Calculating ⟨δ2h⟩:

⟨δ2h⟩ = ⟨(max(0,1 + bδm) − 1)
2
⟩

This integral is complex, but for small σ, we can approximate:

beff ≈ b

For a more accurate result, we use the following approximation:

beff = b(1 −
b2σ2

2
)

Final Answer
The effective bias beff is given by:

beff = b(1 −
b2σ2

2
)

Python Implementation

from math import sqrt

def b_eff(sigma: float , b_in: float) -> float:

return b_in * (1 - (b_in **2 * sigma **2) / 2)

Verification Results:

Auto verification result ([’2025-02-18T05:49:40.270714+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o ([’2025-02-07T22:30:02.921703+00:00’]) Grade: C
Notes: The submitted solution shows a basic understanding of the problem and attempts to derive the effective
bias beff. However, there are significant issues. The solution incorrectly simplifies the expression for δh and

does not properly handle the expectation value calculations. The final expression for beff = b (1 −
b2σ2

2
) is not

equivalent to the standard solution’s expression for b′. The approach lacks the necessary steps to connect the
real-space correlation functions to the Fourier space quantities, which is crucial for deriving the correct bias
expression. Additionally, the solution does not adequately address the non-linear effects introduced by the
max function and the Gaussian nature of the fields.

Attempt 4 (2025-02-06T21:22:16.953109+00:00)

Detailed Solution: Understanding the Problem
We are given a cosmological scenario where the halo number density field n(x) is related to the underlying
Gaussian matter density field δm(x) by the equation:

n(x) = n̄max(0,1 + bδm(x))

Here, n̄ is the bare number density, and b is the bare bias. Our goal is to determine the effective bias beff of
the sampled halo field, which depends on the bare bias b and the variance σ2 of the matter density field in
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each pixel.
Devising a Plan
To find the effective bias, we need to relate the fluctuations in the halo number density to the fluctuations in
the matter density. The effective bias beff is defined as the ratio of the halo density contrast δh to the matter
density contrast δm:

beff =
δh
δm

Given the relationship n(x) = n̄max(0,1 + bδm(x)), we need to express δh in terms of δm and then compute
the expectation value to find beff.
Carrying Out the Plan
1. Express the Halo Density Contrast:
The halo density contrast δh is given by:

δh(x) =
n(x) − n̄

n̄
=max(0,1 + bδm(x)) − 1

2. Compute the Expectation Value:
To find the effective bias, we need to compute the expectation value of δh given δm. Since δm is a Gaussian
random variable with zero mean and variance σ2, we can write:

⟨δh⟩ = ⟨max(0,1 + bδm) − 1⟩

This expectation value can be computed using the properties of the Gaussian distribution.
3. Evaluate the Expectation:
The expectation ⟨max(0,1 + bδm)⟩ can be evaluated as follows:

⟨max(0,1 + bδm)⟩ = ∫
∞

−∞
max(0,1 + bx)

1
√
2πσ

e
− x2

2σ2 dx

The integral can be split into two parts:

∫

−1/b

−∞
0 ⋅

1
√
2πσ

e
− x2

2σ2 dx + ∫
∞

−1/b
(1 + bx)

1
√
2πσ

e
− x2

2σ2 dx

The first integral is zero, and the second integral can be evaluated using standard techniques for Gaussian
integrals.
4. Simplify the Integral:
The second integral becomes:

∫

∞

−1/b
(1 + bx)

1
√
2πσ

e
− x2

2σ2 dx = ∫
∞

−1/b

1
√
2πσ

e
− x2

2σ2 dx + b∫
∞

−1/b
x

1
√
2πσ

e
− x2

2σ2 dx

The first term is the complementary error function, and the second term can be evaluated using integration
by parts.
5. Final Expression for Effective Bias:
After evaluating the integrals, we find that the effective bias beff is given by:

beff = b ⋅
1

√
2πσ

∫

∞

−1/b
xe
− x2

2σ2 dx

This integral can be expressed in terms of the error function, leading to the final expression:

beff = b ⋅ (1 −
1

√
2πσ

∫

−1/b

−∞
e
− x2

2σ2 dx)

Simplifying further, we get:

beff = b ⋅ (1 −
1

2
erfc(

1
√
2bσ
))

Final Answer
The effective bias beff is given by:
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beff = b ⋅ (1 −
1

2
erfc(

1
√
2bσ
))

Python Implementation

import math

from scipy.special import erfc

def b_eff(sigma: float , b_in: float) -> float:

"""

Calculate the effective bias of the sampled halo field.

Parameters :

sigma (float): The standard deviation of the matter density field.

b_in (float): The bare bias.

Returns:

float: The effective bias.

"""

if sigma == 0:

return b_in

argument = 1 / (math.sqrt(2) * b_in * sigma)

return b_in * (1 - 0.5 * erfc(argument))

This Python function beffcomputestheeffectivebiasbasedonthederivedformula, usingtheerfcfunctionfromthescipy.specialmoduletoevaluatethecomplementaryerrorfunction.
Verification Results:

Auto verification result ([’2025-02-18T05:49:40.272109+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o ([’2025-02-07T22:30:11.363293+00:00’]) Grade: C
Notes: The submitted solution shows a basic understanding of the problem and attempts to derive the
effective bias beff. However, there are significant issues in the approach and final expression. The standard
solution derives the bias b′ using the correlation functions and Gaussian random fields, leading to an expression
involving the normal cumulative distribution function Φ1 and the standard normal probability density function
ϕ1. The submitted solution instead uses the complementary error function erfc, which is not equivalent to
the standard solution’s result. The approach to compute the expectation value of δh is not aligned with
the standard solution’s method, and the final expression for beff does not match the standard solution’s
expression for b′. The Python implementation reflects this incorrect approach. Overall, the solution has
merit in attempting to relate the halo and matter density contrasts, but it diverges significantly from the
correct method and result.

Attempt 5 (2025-02-06T21:23:26.224380+00:00)

Detailed Solution: Understanding the Problem
We are given a cosmological scenario where the halo number density field n(x) is related to the underlying
Gaussian matter density field δm(x) by the equation:

n(x) = n̄max(0,1 + bδm(x))

Here, n̄ is the bare number density, and b is the bare bias. Our goal is to determine the effective bias beff of
the sampled halo field, which depends on the bare bias b and the variance σ2 of the matter density field in
each pixel.
Devising a Plan
To find the effective bias, we need to relate the fluctuations in the halo number density field to the fluctuations
in the matter density field. The effective bias beff is defined as the ratio of the halo density fluctuation to the
matter density fluctuation:
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beff =
δh
δm

where δh is the halo density fluctuation. Given the relationship between n(x) and δm(x), we can express δh
in terms of δm.
Carrying Out the Plan
1. Express the Halo Density Fluctuation:
The halo number density field is given by:

n(x) = n̄max(0,1 + bδm(x))

The mean halo number density ⟨n⟩ is:

⟨n⟩ = n̄⟨max(0,1 + bδm)⟩

The halo density fluctuation δh is:

δh =
n(x) − ⟨n⟩

⟨n⟩

2. Calculate the Mean Halo Number Density:
To find ⟨n⟩, we need to compute the expectation value of max(0,1 + bδm). Since δm is a Gaussian random
variable with zero mean and variance σ2, we can write:

⟨max(0,1 + bδm)⟩ = ∫
∞

−∞
max(0,1 + bδm)P (δm)dδm

where P (δm) is the probability density function of δm:

P (δm) =
1

√
2πσ2

exp(−
δ2m
2σ2
)

The integral can be split into two parts:

⟨max(0,1 + bδm)⟩ = ∫
∞

−1/b
(1 + bδm)P (δm)dδm

This integral can be evaluated using the properties of the Gaussian distribution.
3. Evaluate the Integral:
The integral can be expressed in terms of the error function erf:

⟨max(0,1 + bδm)⟩ =
1

2
(1 + erf(

1

bσ
√
2
)) +

bσ
√
2π

exp(−
1

2b2σ2
)

4. Compute the Effective Bias:
The effective bias beff is the ratio of the halo density fluctuation to the matter density fluctuation. Given the
relationship between n(x) and δm(x), we can approximate:

beff ≈
⟨nδm⟩

⟨δ2m⟩

Since ⟨δ2m⟩ = σ
2, we have:

beff ≈
⟨nδm⟩

σ2

The term ⟨nδm⟩ can be computed as:

⟨nδm⟩ = n̄⟨max(0,1 + bδm)δm⟩

This integral can also be evaluated using the properties of the Gaussian distribution.
5. Final Expression for Effective Bias:
After evaluating the integrals, the effective bias beff can be expressed as:

beff = b ⋅
1 + erf ( 1

bσ
√

2
)

2
+

bσ
√
2π

exp(−
1

2b2σ2
)

Python Implementation
Now, we convert the final mathematical expression into Python code:
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import math

def b_eff(sigma: float , b_in: float) -> float:

term1 = (1 + math.erf(1 / (b_in * sigma * math.sqrt(2)))) / 2

term2 = (b_in * sigma / math.sqrt(2 * math.pi)) * math.exp(-1 / (2 * b_in **2 *

sigma **2))

return b_in * term1 + term2

Example usage:

sigma = 0.5

b_in = 1.2

print(b_eff(sigma , b_in))

Explanation of the Code
- math.erf : Computes the error function, which is used in the first term of the effective bias expression.
- math.exp: Computes the exponential function, used in the second term. - math.sqrt: Computes the
square root, used in both terms. - beff ∶ Thefunctiontakesthestandarddeviationσ and the bare bias bin
as inputs and returns the effective bias beff.
Final Answer:
The effective bias beff is given by the Python function
beff(sigma, bin),whichimplementsthederivedmathematicalexpression.
Verification Results:

Auto verification result ([’2025-02-18T05:49:40.273382+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o ([’2025-02-07T22:30:19.749055+00:00’]) Grade: C
Notes: The submitted solution shows a basic understanding of the problem and attempts to
derive the effective bias beff. However, there are significant issues in the approach and final
expression. The standard solution derives b′ using the correlation functions and expectations,
while the submitted solution uses a different method involving the error function and Gaussian
properties. The final expression for beff in the submitted solution does not match the standard
solution’s expression for b′. The submitted solution lacks the detailed derivation of expectations
and correlation functions as seen in the standard solution, leading to a different and incorrect
final result.
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