Contents

SUSY-Symmetry Solutions Report

TPBench.org
Generated on: 2025-02-19 15:54:20

[L Grade Distribution Analysis|

IL1 _Auto-Verification Resultsl

1.3 Grade Distribution by Solution Model|

[1.4 Grade-Verification Correlation Analysis|

[2__Problem SUSY-Symmetry, Difficulty level: 4|
PI Expert Solution]. v o e e e

22 Model Solutionsl

2.2.1

Model:

meta-llama/Meta-Llama-3.1-70B-Instruct|

2.2.2

Model

. Qwen/Qwen2.5-72B-INStIUct« . . o o

2.2.3

Model:

meta-llama/Meta-Llama-3.1-8B-Instruct|.

2.2.4

Model

T Qwen/QWen2.5-7TB-INSUIUCH - . . .« « oo e

225

Model

s Qwen/QwQ-32B-Preview|.o

B26 Model 03l - - « « -« o v e e e,

2.2.8 Model: chatgpt-4o-latest|

2.2.9 Model: deepseek-ai/DeepSeek-V3|.

2.2.10 Model: deepseek-ai/DeepSeek-R1|. L

1 Grade Distribution Analysis

1.1 Auto-Verification Results

Model Correct | Incorrect | Unknown | Success Rate
meta-llama/Meta-Llama-3.1-70B-Instruct 0) 0 0.0%
Qwen/Qwen2.5-72B-Instruct 0 5 0 0.0%
meta-llama/Meta-Llama-3.1-8B-Instruct 0 5 0 0.0%
Qwen/Qwen2.5-7B-Instruct 0 5 0 0.0%
Qwen/QwQ-32B-Preview 0 5 0 0.0%
03-mini 0 5 0 0.0%
ol 0 5 0 0.0%
chatgpt-4o-latest 0 5 0 0.0%
deepseek-ai/DeepSeek-V3 0 5 0 0.0%
deepseek-ai/DeepSeek-R1 0 5 0 0.0%
Note: Success Rate = Correct / (Correct + Incorrect) 100%
1.2 Overall Grade Distribution
| |
40 b 39 .
5
= 30 - =
E
g
= 20 |- 8
o
g
ERRCE 7]
Z 4
o & 0 | D |
T T T
A B C D
Grade
1.3 Grade Distribution by Solution Model
Model A | B | C| D| Total
meta-llama/Meta-Llama-3.1-70B-Instruct | 0 | 0 | 2 | 3 5
Qwen/Qwen2.5-72B-Instruct 0[0]|510 5
meta-llama/Meta-Llama-3.1-8B-Instruct 0(0] 2|3 5
Qwen/Qwen2.5-7B-Instruct 0|l0]|5]|0 5
Qwen/QwQ-32B-Preview 00|41 5
03-mini 01011510 5
ol 3101210 5
chatgpt-4o-latest 0|05]0 5
deepseek-ai/DeepSeek-V3 0[0]|5 10 5
deepseek-ai/DeepSeek-R1 1/10(4]0 5
1.4 Grade-Verification Correlation Analysis
Grade | Correct Incorrect Unknown | Total
A 0 (0.0%) | 4 (100.0%) | 0 (0.0%) | 4
C 0 (0.0%) | 39 (100.0%) | 0 (0.0%) | 39
D 0 (0.0%) | 7 (100.0%) | 0 (0.0%) | 7
Total | 0 (0.0%) | 50 (100.0%) | 0 (0.0%) | 50

Note: Percentages in parentheses show the distribution of verification results within each grade.

40 |-
2 30|
g
g
=
w 20
o
)
£
5 10
Z
o -
! ! ! !
A B C D
Grade

[Correct [Incorrect [] Unknown

2 Problem SUSY-Symmetry, Difficulty level: 4

Problem Text:
Consider the theory ~
L = i€5" 9, +|0¢|* - |F|® (1)

where £ is a 2-component Weyl spinor while ¢ and F' are complex scalar fields. Suppose you want to make
the following infinitesimal transformation a symmetry of this theory:

Sna = V205,00 + V2na F (2)

0n€s = [iV205,7%0udp + V2 F1'

B 0,5 + VI,
= 7i\/§77a0'268‘u¢;+\/§776p (3)

6 F = iN/20j65" 0,0 = iN20715" D)€ (4)

6o F = —in/2(7j6"9,6)"
= -iv/2(9,)" (@) ()"
= —iv/20,E5"n (5)
along with d,¢ and ((5,,(]5)* where 7 is a spacetime-independent infinitesimal fermionic parameter inducing

the transformation. Find the transformation rule 6,¢ and (5,,(15)T for the action associated with £ to remain
invariant.

2.1 Expert Solution

Detailed Steps: Denoting the variation (5n¢>)T as 6,¢, we write
Sy L = i6,£5" 0, +i£5" 0,6, € + 0,,6,00" ¢ + 0,60" 6, — 6, FF — F6,F
= i[~iv/210° 036 + \LRF 16" 0, + i€a" 0, [iv/20° 705 + /2 F]
+ 00y 30" & + 0u 30" n — [~iV/20,85") F - ELinarmo*O,€] (6)
Integrating by parts, we find (denoting with equality an equivalence up to total derivative terms)
6oL = 200" 0345 0, + 0,E6" [V 20° 105 ¢ — ix/2TF
+ 00,00)+ 030" S, + i/ 20, ETF . (7)
Integrate by parts the first two terms to eliminate the the o matrices using the identity %" + ¢"o" = 2¢g*":
OnL = V2 (n0,$0" & + 0"E7d,0)
+ 007 90" & + 0, 90" 8y (8)

again denoting with equality an equivalence up to total derivative terms, and we are using the standard
notation n€ = n*&, and £47” = 7. To make the remainder cancel, we solve

V209, 60" + 0u$0" 66 = 0 (9)
yielding
b6 =—VEng, (5,0)! = ~V2¢7 (10)
Final Answer:
6,0 =—Vane, (3,90)' = —vaga | (1)
Answer Requirements: Provide the answer in the form of the python code. Implement the following

function

from math import sqrt
def find_delta_phi(eta:float, xi:float, bar_eta:float, bar_xi:float) -> Tuplel[float,
float]:
Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)

nwnn

pass

Code Implementation:

from math import sqrt
def find_delta_phi(eta:float, xi:float, bar_eta:float, bar_xi:float):

nwnn

Returns the SUSY transformation rules for phi and its Hermitian conjugate

Returns

A tuple (delta_phi, delta_phi_dagger)

nwnn

delta_phi = -sqrt(2)*eta*xi
delta_phi_dagger = -sqrt(2)*bar_xi*bar_eta

return (delta_phi, delta_phi_dagger)

2.2 Model Solutions
2.2.1 Model: meta-llama/Meta-Llama-3.1-70B-Instruct
Attempt 1 (2025-02-04T08:10:01.2156577Z)

Detailed Solution: To find the transformation rules §,¢ and (dnqﬁ)T, we need to ensure that the Lagrangian
L remains invariant under the given transformations.
We start by writing the variation of the Lagrangian under the given transformations:

Sp L = i6,E5" 0, + €51 0,6, € + 20,00" 6y p — 2F 6, F — 26, FF (12)

Substituting the given transformations, we get:

8L = i(~iv/2n% " 3Oud + V215 F)5" 0,€ +i€6" 0,(iV 204470, ¢ + V20 F) (13)
+20,00" 8,0 — 2F (iv/ 276" 8,,€) - 2(~iv/20,E5"n) F (14)

Simplifying and rearranging the terms, we get:

8L = 2v/2n° 0" 30u06" 0, - 2V207, F5" 8, € + 2V/2i€6" 01,47 0,006 (15)
+ 2V/2i€6" 000, F + 20,00" 6, — 2iV/2F 75" 9, + 2i7/2F D, €6 (16)

For the Lagrangian to remain invariant, 0, £ must be zero. This implies that the coefficient of 9, $0" 0,¢ must
be zero, and the remaining terms must cancel each other.
Comparing the coefficients, we get:

5n¢::i\/§na0253uéﬂ (17)

Taking the Hermitian conjugate, we get:

(5n¢)f = _i\/éaugagiﬁ'ﬁﬁ (18)
Now, let’s convert these expressions into Python code:

from math import sqrt
from typing import Tuple

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuple [
float, float]:
Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)
delta_phi = 1j * sqrt(2) * eta * bar_xi
delta_phi_dagger = -1j * sqrt(2) * xi * bar_eta
return delta_phi, delta_phi_dagger

Example usage:

eta = 1.0

xi = 1.0

bar_eta = 1.0

bar_xi = 1.0

delta_phi, delta_phi_dagger = find_delta_phi(eta, xi, bar_eta, bar_xi)
print("delta_phi =", delta_phi)

print ("delta_phi_dagger =", delta_phi_dagger)

Note that this code assumes that the inputs eta, xi, bar.ta, andbar;iarecomplexnumbers, andtheoutputisatupleo ftwocomplexnumbe
Verification Results:

Auto verification result ([2025-02-18T05:50:03.086636+00:00’]) Status: Incorrect
Evaluations:

Evaluated by gpt-4o0 (['2025-02-05T22:58:04.715436+00:00’]) Grade: C

Notes: The submitted solution shows some understanding of the problem but contains significant issues. The
expression for d,¢ in the submitted solution is i\/inaag 68@5 , which differs from the standard solution’s

—V/2n¢. The submitted solution incorrectly includes an imaginary unit ¢ and uses (9H§_B instead of £&. The
Hermitian conjugate also has similar issues. The approach to ensuring the Lagrangian remains invariant is

correct in principle, but the execution and final expressions are incorrect.

Attempt 2 (2025-02-04T08:10:50.0436527)

Detailed Solution: To find the transformation rules for ¢ and ¢, we need to ensure that the Lagrangian

remains invariant under the given transformations.
We start by writing the variation of the Lagrangian:

3L = i6(€5"0,€) + 5(10¢%) - 6(|F)

= i0€5"0,& +i€6" 0,06 + 0,00"6¢ + 0,$0"6¢ — FSF — FSF

Substituting the given transformation rules, we get:

8L = i(-iv/2n*o" 30+ V205 F)5" 0,€ +i€6" 0, (V20457 0u § + /21 F)
+ 000" 3¢ + 0, 40" ¢ — F(ivV/275" 9,€) - F(-iv/20,85"n)

To make the Lagrangian invariant, we require §£ = 0. This can be achieved if we choose:

¢ = iv/2n"o" 50u€
56 = —i\/§ﬁ5-5“5“8u€

(19)
(20)

(23)
(24)

These transformation rules ensure that the Lagrangian remains invariant under the given supersymmetry

transformations.
Now, let’s implement the solution in Python:

from math import sqrt
from typing import Tuple

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuplel
float, float]:
nnn
Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)
delta_phi = 1j * sqrt(2) * eta * xi
delta_phi_dagger = -1j * sqrt(2) * bar_eta * bar_xi
return delta_phi, delta_phi_dagger

Example usage:
eta = 1.0

xi = 1.0
bar_eta = 1.0
bar_xi = 1.0

delta_phi, delta_phi_dagger = find_delta_phi(eta, xi, bar_eta, bar_xi)
print("Delta phi:", delta_phi)
print ("Delta phi dagger:", delta_phi_dagger)

This code defines a function findqelta,hithattakestheparameterseta, xi, barc.ta, andbariasinputandreturnsthetrans formationrule
Verification Results:

Auto verification result ([’2025-02-18T05:50:03.087110+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o0 (['2025-02-05T22:58:16.500225+00:00’]) Grade: C
Notes: The submitted solution shows an understanding of the need to make the Lagrangian invariant under
transformations, but it contains significant issues. The transformation rules derived, d¢ = i\/in”‘ag Baug and

5 = —iﬁ%&“ﬁaa@, do not match the standard solution’s final answer 8,¢ = —/2n¢ and (677¢J)Jr = —\/2¢7.
The submitted solution incorrectly includes imaginary units in the transformation rules, which are not present
in the standard solution. Additionally, the Python implementation is irrelevant to the mathematical derivation
and does not address the core issue of deriving the correct transformation rules.

Attempt 3 (2025-02-04T08:12:30.119615Z)

Detailed Solution: To find the transformation rules d,¢ and (dnqﬁ)T, we need to ensure that the Lagrangian
L remains invariant under the given transformations.
First, let’s analyze the given transformations:

25
26

Sna = V204,17 0ud + V20 F
Sns = —i\/énaai:g@ud_) +\V20,F
6, F = iv/2716" 8,.€

o, F = —in/20,65"n

27

(
(
(
(28

)
)
)
)

We want to find §,¢ and (énqﬁ)T such that the Lagrangian £ remains invariant.
The variation of the Lagrangian £ under the given transformations is:

Sy L = i6,E5" 0,6 +i£5" 0,6, + 20,00" 5,) — 2F 6, F — 25, F F (29)

= 18, E0" D€ + 05" Dbt + 20,00" 6, — 2iN2F 5" 0,6 + 2iV/20,65" N F (30)

Substituting the given transformations, we get:

onL = i(—i\/ﬁﬁadggaué i \/éﬁép)ﬁyawg +i€6"0,,(iV200,,7" 0o + V2 F) (31)
+28,0" 8, — 20N 2F 75" 9,6 + 2iN/20,E5" nF (32)

To make the Lagrangian £ invariant, we require 6, £ = 0. This implies:

20,,$0" 6,6 = —i(=iv2n“o" 50ud+ V2ii5F)5" 0, - i€6" 0, (iV/20% 47 0o + V21 F) (33)
+2iV/2F 76" 0, - 2iN/20,.66"nF (34)

Simplifying the expression, we get:

85y = —%ﬂn‘*ag Oud+ %\/éﬁa“aug (35)
806 = 5V2n" 0" 10~ /205" D, (36)

Taking the Hermitian conjugate, we get:

(800)' = ~2V/2050%55000 + =\/Bn0" € (37)

Therefore, the transformation rules for ¢ and its Hermitian conjugate are:

Ong = %\/577&0:58#$ - %\/5775Mau€ (38)
(819)" = =2 V205075000 + =V 200" 9,E (39)

Now, let’s implement the solution in Python:

from math import sqrt
from typing import Tuple

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuplel
float, float]:

Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)

nnn

delta_phi = (1j * sqrt(2) / 2) * eta * bar_xi - (1j * sqrt(2) / 2) * bar_eta * xi

delta_phi_dagger = (-1j * sqrt(2) / 2) * bar_eta * xi + (1j * sqrt(2) / 2) * eta
* bar_xi

return delta_phi, delta_phi_dagger

Test the function

eta = 1.0

xi = 1.0

bar_eta = 1.0

bar_xi = 1.0

delta_phi, delta_phi_dagger = find_delta_phi(eta, xi, bar_eta, bar_xi)
print("Delta Phi:", delta_phi)

print ("Delta Phi Dagger:", delta_phi_dagger)

This code defines a function findqelta,hithattakestheinputseta, xi, bareta, andbargiandreturnsthetrans formationrules forphiandi
Verification Results:

Auto verification result ([’2025-02-18T05:50:03.087626+00:00’]) Status: Incorrect
Evaluations:

Evaluated by gpt-4o0 (['2025-02-05T22:58:23.944304+00:00’]) Grade: D

Notes: The submitted solution does not match the standard solution. The standard solution finds the
transformation rules as d,¢ = —\/5175 and ((5n¢>)Jr = —\/55_17, which are simple expressions ensuring the invariance
of the Lagrangian. The submitted solution, however, provides a complex expression involving derivatives and
o matrices, which is not equivalent to the standard solution. Additionally, the submitted solution includes
Python code that is irrelevant to the mathematical derivation and does not contribute to solving the problem
correctly. The approach shows a misunderstanding of the transformation rules required for the invariance of
the Lagrangian.

Attempt 4 (2025-02-04T08:19:42.3481477)

Attempt 5 (2025-02-04T08:20:45.0646987)

Detailed Solution: To find the transformation rules §,¢ and (5,,¢>)T for the action associated with £ to
remain invariant, we need to consider the variation of the Lagrangian under the given transformations.

The Lagrangian is given by ~
L =i€a"9,¢ +|0¢]” - [FI’ (40)

We need to find the variation of the Lagrangian under the transformations

Onba = V20" 0.0+ 20 F

57,5,3 = —Z'\/énaagéap‘(z)-‘-\/iﬁgﬁ'
6, F = iN205"0,¢
o F = —iv20,€5"n

We also need to consider the variation of the Lagrangian under the transformation d,¢ and (6,7¢)T.
The variation of the Lagrangian is given by

Sl = 10,6" 0, + 166" 0,.0nE +20,00" 6y - 2F 5, F
i(—i\/inaaggau& + V27, F)6" 0, + 186" 0, (iV 20057 0u + V2o F)
+28,0" 8,¢ — 2F (i/275"9,.€)

To make the Lagrangian invariant under the transformation, we need to set §,L = 0.
After some algebraic manipulations, we can find that

(S =3

onp = ﬁn ‘7538;“56
7 @ _j

(6n¢)T = _:7§6u§ UZBWB

Now, let’s implement the solution in Python code:

from math import sqrt
from typing import Tuple

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuplel
float, float]:
mnn
Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)
nnn
delta_phi = 1j / sqrt(2) * eta * bar_xi
delta_phi_dagger = -1j / sqrt(2) * xi * bar_eta
return delta_phi, delta_phi_dagger

Test the function

eta = 1.0

xi = 1.0

bar_eta = 1.0

bar_xi = 1.0

delta_phi, delta_phi_dagger = find_delta_phi(eta, xi, bar_eta, bar_xi)
print (f"delta_phi = {delta_phil}")

print (f"delta_phi_dagger = {delta_phi_daggerl}")

This code defines a function findqelta,hithattakestheparameterseta, i, barc.ta, andbariasinputandreturnstheSUSY trans f ormat
Verification Results:

Auto verification result ([2025-02-18T05:50:03.088147+00:00’]) Status: Incorrect
Evaluations:

Evaluated by gpt-4o0 ([’2025-02-05T22:58:46.800206+00:00’]) Grade: D

Notes: The submitted solution has major issues and does not match the standard solution. The transformation
rules for 6, and (8,¢)" are incorrect. The standard solution provides d,¢ = —\/57]5 and (3,¢)" = —v/2€7, while
the submitted solution gives 0,¢ = %n“agﬁaﬂéﬁ and ((5n¢)Jr = —ﬁaugaagﬁ.ﬁﬂ which are not equivalent.
The approach and calculations are fundamentally flawed, showing a lack of understanding of the correct

transformation rules and their derivation.

10

2.2.2 Model: Qwen/Qwen2.5-72B-Instruct
Attempt 1 (2025-02-04T08:33:21.1306997)

Detailed Solution: Step 1: Understand the Problem
We are given a Lagrangian density £ and a set of infinitesimal transformations for the fields &, &, F, and
F. We need to find the transformation rule 6,¢ and (8,¢)" such that the action associated with £ remains
invariant under these transformations.
Step 2: Devise a Plan
To find 6,¢ and (6,,¢)T, we will: 1. Compute the variation of the Lagrangian £ under the given transforma-
tions. 2. Set 6L = 0 to ensure invariance. 3. Solve for 8,¢ and (8,¢)".
Step 3: Carry Out the Plan
Step 3.1: Compute the variation of the Lagrangian
The Lagrangian density is:
L =i€5"9,¢ + |04l - |FI’

We need to compute the variation of each term under the given transformations.
1. Variation of i£5"9,¢:
5(i€5"0,8) = i6€6" 0,6 +i5"0,.6¢

Using the given transformations: - - ~

85 = —iﬂn%geam +V2n,F

66a = V20" 10 + V20 F
Substituting these into the variation:

§(i€0" 0u€) = i(~iv/2n" 0" ;0.0 + V213 F)5"7 0,6 + i€6" 9, (i 20540 0y $ + /205 F)
Simplifying:
S(i€5"0u€) = V20" 0" ,0,65" 7 0,6 + V201 F5" PP 0,€ + i€ (120547 v + /20 F)

2. Variation of |9¢|*:

5(10¢°) = 8, (5¢)70" ¢ + 80" 9" (59)
3. Variation of |F|*:

S(F]) = (OF)'F + F'(6F)
Using the given transformations:
OF = iv/2ij6" 0,&

6F = —in/20,66"n
Substituting these into the variation:
S(FP) = (=iv/20,E6" n) F + F' (iv/Z75" 0,,€)
Step 3.2: Set L=0

To ensure invariance, we set:

5L = 6(i€5" 9,€) + 5(109[*) - S(FI*) = 0

Substituting the variations:
Van® o Baua)a"ﬂ'ﬁ 0, E+iv/273F5" 70,6 +i€6" 0, (i 2075470, +V/ 213 F) +0,(58) 10" $+0,.0' 0" (66) - (~in/20,6"n) F-F' (iv/2715 6

Step 3.3: Solve for 8,¢ and (6,¢)"
To simplify, we assume the simplest form for d,,¢ and ((3,7d>)T that satisfies the invariance condition. A common
choice in supersymmetric theories is:

Sn = V/207€
(5n¢)T = \/55_77

11

Final Answer
The transformation rules for ¢ and its Hermitian conjugate are:

Sn = V/207€

(5n¢)T = \/5577
Python Code

from math import sqrt
from typing import Tuple

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuplel
float, float]:

nwnn

Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)

delta_phi = sqrt(2) * bar_eta * xi
delta_phi_dagger = sqrt(2) * bar_xi * eta
return (delta_phi, delta_phi_dagger)

This Python function implements the transformation rules for ¢ and its Hermitian conjugate as derived above.
Verification Results:

Auto verification result ([’2025-02-18T05:50:03.088555+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o0 (['2025-02-05T22:58:59.243822+00:00’]) Grade: C

Notes: The submitted solution shows a basic understanding of the problem and attempts to derive the
transformation rules for d,¢ and its Hermitian conjugate. However, there are significant issues: 1) The final
transformation rules d,¢ = V27i¢ and (&,(j))Jr =\/2€n are incorrect compared to the standard solution, which
gives 9, ¢ = —\/§n§ and (5,,¢)T = —\/5517. 2) The solution does not correctly simplify or integrate by parts the
variations to match the standard solution’s approach. 3) The Python code provided does not align with the
correct transformation rules. The approach has some merit, but the final results and some steps are incorrect.

Attempt 2 (2025-02-04T08:35:05.3158207)

Detailed Solution: Step 1: Understand the Problem
We are given a Lagrangian density £ and a set of infinitesimal transformations 4, for the fields ¢, &, F, and
F. We need to find the transformation rules §,¢ and (6,6)" such that the action associated with £ remains
invariant under these transformations.
Step 2: Devise a Plan
To find d,,¢ and (énqﬁ)T, we will: 1. Compute the variation of the Lagrangian 6£ under the given transforma-
tions. 2. Set 0L = 0 to ensure invariance. 3. Solve for 8,¢ and (8,¢)".
Step 3: Carry Out the Plan
Step 3.1: Compute the variation of the Lagrangian
The Lagrangian density is:
L =i€"0,€ + (09| - |F|’

We need to compute the variation §£ under the given transformations. The variations of the fields are:
Ona = iV200,7"Oud + V20a F
S T _
0nés = -iv/2n aaﬁa‘@ + \/577BF
6, F = iv/216" 8,€
0, F = —in/20,65"n

Step 3.2: Compute the variation of each term in £

12

1. Variation of i5"0,¢: _ ~ B
5(i€5"0,.€) = 16" 0,.€ +1£5"0,,0¢
Substitute 6, and 6,&:
3(i€5"0,€) = i(=iv/2n" 0" ;04 + V273 F)5"0,€ +i€" 0, (1V/ 204571 0 + V210 F)
Simplify:
8(i€c"0,€) = \/inaagéa#&)&“a#g + V205 F6" 0,8 +i€6" 0, (120" 47 0utp + V21a F)
2. Variation of |9¢|*:
5(1061") = 20,60" (31¢)

3. Variation of —|F|*:

5(~|F*) = -2F6,F
Substitute 6, F:

S(-IFP?) = ~2F (i/2i15"0,)

Step 3.3: Combine the variations and set 6L =0

5L =\2n%o" Bauéa“aug +iV20, F5" 0,6 +i€6" 0, (V20" 1% 0ud + V2N F) +20,00" (8,) — 2F (iv/276" 9,€)
For 0L =0, the terms involving 7 and % must cancel out. This implies:

20,$0" (8,0) = —V2n" 0" 50u 65" 8,6 - V215 F6" 0, - i€6" 0, (iV/ 204 47 0up + V21a F) + 2F (/2175 0,.€)

By comparing the coefficients of and 7, we find:

S = V/27¢

517‘2’ = \/5775
Final Answer:

S = V/277¢

5%5 = \/5775_

Python Code Implementation

from math import sqrt
from typing import Tuple

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuplel
float, float]:

nnn

Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)

nwnn

delta_phi = sqrt(2) * bar_eta * xi
delta_phi_dagger = sqrt(2) * eta * bar_xi
return (delta_phi, delta_phi_dagger)

This Python function implements the transformation rules for ¢ and ¢ as derived from the mathematical
reasoning.
Verification Results:

Auto verification result ([2025-02-18T05:50:03.088939+00:00’]) Status: Incorrect
Evaluations:

Evaluated by gpt-4o0 (['2025-02-05T22:59:09.730775+00:00’]) Grade: C

Notes: The submitted solution shows a basic understanding of the problem and attempts to derive the
transformation rules for 6,¢ and (8,¢)". However, there are significant issues: the final transformation rules
8, = /27€ and 6,6 = /2n€ are incorrect compared to the standard solution, which gives &,¢ = —/2n¢ and
((5,,gi>)Jr = —\/igﬁ. The approach has merit, but the final expressions do not match the standard solution,
indicating a misunderstanding in the derivation process.

13

Attempt 3 (2025-02-04T08:36:44.8966647)

Detailed Solution: Step 1: Understand the Problem ~ ~
We are given a Lagrangian density £ and a set of infinitesimal transformations 6,qa, 0n§s, 0nF', and 6, F. We

need to find the transformation rule 8,6 and (6,4)" such that the action associated with £ remains invariant
under these transformations.
Step 2: Devise a Plan
To find 6,¢ and (6,,(;3)7, we will: 1. Compute the variation of the Lagrangian £ under the given transforma-
tions. 2. Set 4L = 0 to ensure invariance. 3. Solve for &,¢ and (8,¢)".
Step 3: Carry Out the Plan
Step 3.1: Compute the variation of the Lagrangian
The Lagrangian density is:
L =i€5"0,¢ + (09| - |F|’

We need to compute the variation £ under the given transformations. The variation of each term in L is:
1. Variation of i£"9,¢: ~ ~ -
5(i€5"0,.€) = 166" 0,.& + €510, (6€)

Using the given transformations: ~ B -
85 = —i\/inaazﬁauqﬁ +V20,F
660 = V20" 140ud + 20 F
Substituting these into the variation:
§(i€0" 0u€) = i(~iv2n" 0" ;0.0 + V213 F)5"7 0,6 + i€6" 9, (i 20541 0y $ + V205 F)
Simplifying:

5(i€5"9,6) = V20" 0" Bauasa"ﬁ'ﬂayg + V20" 0,6 +i€6" (V20547 0,0$ + /2030, F)

2. Variation of |9¢|*: - - -
5(10¢[*) = 6(9.00") = 9.(56)0" ¢ + D.$0" (59)
3. Variation of |F|*:
5(|F]?) = 8(FF) = 0FF + F6F

Using the given transformations:
6F = iN/25"0,.€

6F = —iN/20,65"n

Substituting these into the variation:
S(|F?) = iv/205" 0,6 F + F(-in/20,E5"n)

Step 3.2: Set 6L =0
Combining all the variations, we set L = 0:

oL = /21" Baugia"ﬁﬂaugmﬂﬁﬁﬁa”ﬁﬂaugnga“(ﬁagaﬁdaua#mﬂnﬁaﬁ)wu(w)a“q%amaﬂ(5&)”@775“8#@-2\/%6#55'

To ensure invariance, we need to find 6¢ and d¢ such that the above equation holds. By comparing terms,

we find:
3¢ = V2mE
¢ = Vg
Final Answer B
The transformation rules for ¢ and ¢ are:
Sy = V20€
6n¢_5 = \/5775

Python Code

14

from math import sqrt
from typing import Tuple

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuplel
float, float]:

nwnn

Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)

delta_phi = sqrt(2) * bar_eta * xi
delta_phi_dagger = sqrt(2) * eta * bar_xi
return (delta_phi, delta_phi_dagger)

Verification Results:

Auto verification result ([’2025-02-18T05:50:03.089318+-00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o0 (['2025-02-05T22:59:18.087757+00:00’]) Grade: C

Notes: The submitted solution shows a basic understanding of the problem and attempts to find the trans-
formation rules for d,¢ and (,¢)". However, there are significant issues: 1) The final transformation rules
ono = V27¢ and Sp = V/2n€ are incorrect compared to the standard solution, which gives ono = —/2n€ and
(0,0)' = —/2€7. 2) The solution process lacks integration by parts and the use of identities to simplify
terms, which are crucial steps in the standard solution. 3) The Python code provided is irrelevant to the
mathematical derivation and does not contribute to solving the problem. Overall, the approach has some
merit, but the final results and key steps are incorrect.

Attempt 4 (2025-02-04T08:38:29.2094907)

Detailed Solution: Step 1: Understand the Problem
We are given a Lagrangian density £ and a set of infinitesimal transformations 6,¢, 6,&, 6,F, and §,F. We
need to find the transformation rule d,¢ and (5,7(15)T such that the action associated with £ remains invariant
under these transformations.
Step 2: Devise a Plan
To find 6,¢ and (6,¢)", we will: 1. Compute the variation of the Lagrangian 6£ under the given transforma-
tions. 2. Set 0L = 0 to ensure invariance. 3. Solve for §,¢ and (5,¢)".
Step 3: Carry Out the Plan
Step 3.1: Compute the variation of the Lagrangian
The Lagrangian density is:
L =i€6" 9,8 + 04| - |F|?

We need to compute the variation §£ under the given transformations. The variations of the fields are:
Onba = V20" 140ud + V2o F
Onls = —i\/inaagﬁaué +V/20,F
6o F = iN/21j6" 8,.&
6, F = —in/20,65"n

Step 3.2: Compute the variation of each term in the Lagrangian
1. Variation of 5" 9,¢:

5(i€6" D,€) = i0EG" D€ + €51 D,0¢

Substitute the variations:

8(i€5" 0u€) = i(=iv/2" 0" ;04 + V2013)52 0,8 + i85 0, (12017 0ud + V21 F)

15

Simplify:
8(i€5"0,€) = \/5770(0238#&?“,&58#5 + \/577615‘5“568#5 i ﬂié&“ﬁ#(ogdﬁd u®) + \/iigf?uau(naF)

2. Variation of |9¢[*: - ~ ~
5(10]*) = 6(0u¢0" §) = 0,660" ¢ + 9, 0" 5
3. Variation of |F|*: }))
5(|F]?) = 6(FF) = 0FF + F6F
Substitute the variations: B -
S(IFI?) = (V276" 8,€)F + F(~iv/20,€5"n)

Step 3.3: Set 6L =0
Combine all the variations and set £ = 0:

5L =\2n%o" Bau$6”5ﬂ8#§+\/§ﬁ5F&”Bﬁaufﬂ-\/iié&“au(agdﬁd D)+ 2iE5" 0, (N0 F)+0,, 00" ¢+, 0" ¢+ (in/ 25" 0,6) F+ F (—in/
To ensure invariance, the terms involving §¢ and §¢ must cancel out. Therefore, we set:

Onp = V21" a

Snd = V275 EX

Final Answer
The transformation rules for ¢ and its Hermitian conjugate are:

Snd = V20"

577‘2’ = \/iﬁdgd
Python Code

from math import sqrt
from typing import Tuple

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuple [
float, float]:

nwnn

Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)

delta_phi = sqrt(2) * eta * xi
delta_phi_dagger = sqrt(2) * bar_eta * bar_xi
return (delta_phi, delta_phi_dagger)

This Python function implements the transformation rules for ¢ and its Hermitian conjugate as derived above.
Verification Results:

Auto verification result ([’2025-02-18T05:50:03.089693+-00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o0 (['2025-02-05T22:59:27.179820+00:00’]) Grade: C

Notes: The submitted solution shows a basic understanding of the problem and attempts to derive the
transformation rules for ,¢ and its Hermitian conjugate. However, there are significant issues: 1) The final
transformation rules 6, ¢ = V2n%€, and S = V/274€% are incorrect compared to the standard solution, which
gives 8,6 = —/2n€ and (8,¢)" = —/2€7. 2) The solution lacks integration by parts and the use of identities
to simplify terms, which are crucial steps in the standard solution. 3) The Python code provided is irrelevant
to the mathematical derivation and does not contribute to solving the problem. Overall, the approach has
some merit, but the execution and final results are flawed.

Attempt 5 (2025-02-04T08:40:31.7865237)

16

Detailed Solution: Step 1: Understand the Problem
We are given a Lagrangian density £ and a set of infinitesimal transformations 6,¢, 6,¢, §,F, and 6,F. We
need to find the transformation rules 8,¢ and (6,¢)" such that the action associated with £ remains invariant
under these transformations.
Step 2: Devise a Plan
To find d,¢ and (5,,(;5)T, we will: 1. Compute the variation of the Lagrangian 6L under the given transforma-
tions. 2. Set 0L = 0 to ensure invariance. 3. Solve for 6,¢ and (8,¢)".
Step 3: Carry Out the Plan
Step 3.1: Compute the variation of the Lagrangian
The Lagrangian density is:
L = i€5"0u€ +|0¢]" - |FI°

We need to compute the variation d£ under the given transformations:
Ona = V204,07 0ud + V21 F
nép = —i\/ino‘agg@“q_b +V2n,F

6, F = iv/216" 8,.€
6, F = —in/20,E5"n

Step 3.2: Variation of each term in the Lagrangian
1. Variation of i£5"9,¢: - - B
5(i€6"0,.€) = 10661 D€ + €6 D, 0E
Substitute 6,& and d,¢:
S(i€5" 0u€) = i(~iv/20" 0" ;04 + /25)5 7P 0,6 + i€ (120 k7% 0 + /20)
Simplify:
5(i€5"0,€) = V20" 0" Bauéa“f?ﬁ 0,6 + V273 F5"7° 0,6 — /285" 0 471 Bup — V2E5 1o F
2. Variation of |9¢|*: B ~ B
5(106[°) = 6(8.00" §) = 8, (66)9" ¢ + Du60" (56)

Let 0,6 = o and d,¢ = a': ~
5(104[") = 040" ¢ + 0,40" o'

3. Variation of —|F|*:
§(-|F?) = -6(FF) = —(0FF + F6F)

Substitute &, F and &, F:
§(~|F?) = =iV276"8,EF +iV2F0,86"

Step 3.3: Set L=0
Combine all the variations:
6L =2 " Bauéa”BBaH&\/%Fa“f’ﬁaug—ﬂg‘ﬁ“agaﬁdau¢—ﬁg‘aﬂnaF+auaa“<£+aﬂ¢a”aT—i\/iﬁa“augﬁmﬂmug‘a“n
For £ =0, the terms involving o and o' must cancel out the other terms. This implies:
000" p+0,00" " = V25" 0t 7" D+ V2£5" N F-V/ 20" 5" 68#&)5“5‘*8“5—\/5176F&“Bﬂau§+i\/§ﬁ5“8H§F—i\/§Fauéﬁ“n
By comparing the coefficients, we find:

o= \/inafa

OCT = \/Eﬁdgd

Thus, the transformation rules are:

dnd = ﬂnaﬁa
577‘2’ = \/Qﬁc‘vém

Final Answer

17

from math import sqrt
from typing import Tuple

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuplel
float, float]:

nwnn

Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)

won
delta_phi = sqrt(2) * eta * xi
delta_phi_dagger = sqrt(2) * bar_eta * bar_xi
return (delta_phi, delta_phi_dagger)

This Python function implements the transformation rules for §,¢ and ((5nq§)Jr as derived from the given
Lagrangian and transformations.
Verification Results:

Auto verification result ([’2025-02-18T05:50:03.090073+00:00]) Status: Incorrect

Evaluations:

Evaluated by gpt-40 (['2025-02-05T22:59:42.774846+00:00’]) Grade: C

Notes: The submitted solution shows a basic understanding of the problem and attempts to derive the
transformation rules for 6,¢ and (6,,¢)T. However, there are significant issues: 1) The final transformation
rules derived in the submitted solution are &,¢ = V27%&, and J,¢ = \/27j4€%, which differ from the standard
solution’s 6,¢ = —v/2n¢ and (5,$)" = —/2€7. 2) The solution does not correctly handle the integration by
parts and simplification steps necessary to reach the standard solution’s final form. 3) The Python function
provided does not match the final transformation rules from the standard solution. Overall, the approach has
some merit, but the execution contains major flaws leading to incorrect final results.

18

2.2.3 Model: meta-llama/Meta-Llama-3.1-8B-Instruct
Attempt 1 (2025-02-04T08:50:59.4332467)

Detailed Solution: To find the transformation rule d,¢ and (6,7417)T7 we need to ensure that the action
associated with £ remains invariant under the given infinitesimal transformation.
First, we need to calculate the variation of the Lagrangian density £ under the given transformation. We

have:
£ =i€6" 0,6 +10¢[" - |FI* (41)
The variation of £ under the given transformation is given by:
0L = 8—[:5§+8—l_:6§7+ 8—l:6<j>+ 8—ﬁéF (42)

9T e T 99" " oF

Using the given transformation rules, we can calculate the variation of each term in the Lagrangian density:

5(i€5"0,8) = i€5"0,,0¢ +i6€6"0,.¢ (43)

Using the given transformation rules, we can calculate the variation of ¢ and &¢:
06 = iV/20" 710 + V20 F (44)
5€ = ~iv2n 0" 0, + V21 F (45)

Substituting these expressions into the variation of the Lagrangian density, we get:

8(i€6"0,€) = 1€6" Ou[iV/ 205471 0ud + V2o F] +i[iV/ 20447 00 + V200 F 15" 0,€ (46)

Simplifying this expression, we get:
8(i€5" 9,8) = ~2V2€6" 0,65, 0" + V266" 8, (V20 F) + 2v/25,0" 16" €0, + V20 F 5" 9,€ (47)
Using the given transformation rules, we can calculate the variation of the other terms in the Lagrangian

density:

5(10¢|*) = 20,00" 3¢ (48)

5(|F|?) = -2F6F (49)

Substituting these expressions into the variation of the Lagrangian density, we get:

0L = —2v/266"8,,¢5,0" 7] + V266" 0, (V20 F) + 2325, 8" 16" €8, + N 2nF 5" 9, + 28,6056 - 2F6F (50)

To ensure that the action remains invariant under the given transformation, we require that §£ = 0. This
implies that:

56 Loc0, 1)

V2
OF = 7 ”8,&77 (52)
Now, we can write the final executable Python code as required by the ” Answer Requirements”:

from math import sqrt
from typing import Tuple

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuplel
float, float]:

nwnn

Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)

19

nwnn

delta_phi = (sqrt(2) / 2) * (xi * bar_eta)
delta_phi_dagger = (sqrt(2) / 2) * (bar_xi * eta)
return delta_phi, delta_phi_dagger

Example usage:
eta = 1.0

xi = 2.0
bar_eta = 3.0
bar_xi = 4.0

delta_phi, delta_phi_dagger = find_delta_phi(eta, xi, bar_eta, bar_xi)
print("Delta Phi:", delta_phi)
print ("Delta Phi Dagger:", delta_phi_dagger)

This code defines a function findqelta,hithattakes fourarguments : eta, xi, bar.ta, andbaryi. ItreturnsatuplecontainingtheSUSY tr
Verification Results:

Auto verification result ([2025-02-18T05:50:03.090536+-00:00’]) Status: Incorrect
Evaluations:

Evaluated by gpt-4o0 (['2025-02-05T22:59:52.118486+00:00’]) Grade: C

Notes: The submitted solution shows an understanding of the problem by attempting to calculate the variation
of the Lagrangian density £ and ensuring the action remains invariant. However, there are significant issues:
the final transformation rules for §,¢ and its Hermitian conjugate do not match the standard solution, which
are p¢ = —/2n¢ and (5nq§)T = —/2€7. The submitted solution incorrectly derives d¢ = ?&“gaﬂﬁ, which
is not equivalent to the standard solution. The approach has merit in terms of setting up the problem and
attempting to derive the variations, but the final expressions are incorrect and do not satisfy the invariance
condition as required.

Attempt 2 (2025-02-04T08:51:56.396963Z)

Detailed Solution: To find the transformation rule §,¢ and (&,gzﬁ)T, we start by considering the variation
of the Lagrangian density under the given infinitesimal transformation.
The Lagrangian density is given by

L = i€5" 9u€ +|04[" - |FI? (53)

We need to find the variation of this Lagrangian density under the transformation rules provided.
First, let’s consider the variation of the first term:

8(i€5"9,€) (54)
Using the transformation rules for ¢ and &, we get

6(i€5"9,8) = i6(€)a"DuE +i€5"5(DuE)
= i(fiﬁn“0258#<2>+\/§77613‘)5”8u§
+i€a" (—iv/2n30, F)
- ﬂnaagﬁauéé"ayg -\V2n7,F5"0,¢
~V2€6" 030, F

Next, let’s consider the variation of the second term:

5(10¢l%) (55)

20

Using the transformation rules for ¢, we get

5(10¢]*) 20,¢6(0" ¢)
20,6(~in/20" Bﬁ%agb +V2n°F)

~2iv/20,,¢0" Bﬁ’é 8% + 2/20,¢n° F

Finally, let’s consider the variation of the third term:

S(IF) (56)
Using the transformation rules for F', we get
S(FP) = -2P8(F)
= —2F(iV275"8,€)
= —2iV2F7g"8,¢

Now, we need to find the transformation rule d,¢ that makes the Lagrangian density invariant. We can do
this by requiring that the variation of the Lagrangian density is zero.
Setting the variation of the Lagrangian density to zero, we get

5L = 8(i€6"9,8) +5(10¢*) - 5(IF*)
= V21%0" ,0,86" 0, - V203 F5"0,¢
—V2€6" 130, F
~2iv/20,,¢0" Bﬁﬁaaqﬁ +2v/20,6n°F
+2i\/2F 76" 8,6
=0
Simplifying the above equation, we get
V2ol ;0,05" 0,6 ~ V203 F5" 8,6 ~ /266" 1O F
~2iV20u60" 717 0%6 + 220,60 F + 2iV2Fi5" 0,6 = 0

Now, we can solve for §,¢.
Using the definition of §,¢, we get

1 N T =
dnp = ﬁ(—\/in agﬁ.ama 8,,£+\/§776F0 O3
+V/266" 150, F + 210, d0" Bﬁéa‘*(p M F
-21Fna"8,¢)

Taking the Hermitian conjugate of the above equation, we get

1 [e% T =V _ —U
(6,0)" = m(\/in U‘a‘ﬁ@uqﬁa 5u§—\/5n5Fa 0.€
V265" 10, F ~ 2i0u 0" Bf,Ba% +2°F
+2iFing* 9,.€)

Now, we can write the final answer in Python code.

from math import sqrt

def find_delta_phi(eta, xi, bar_eta, bar_xi):

nwnn

Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)

21

delta_phi = (sqrt(2)*etal[0]*xi[0]*bar_xil[1] - sqrt(2)+*bar_etal[l]l*bar_xi[0]*xil[1]
+ sqrt(2)*bar_xi[0]*eta[0]*bar_phi[1] - 2*eta[0]=*F
+ 2xixFxbar_etal[1]) / (2*sqrt(2))
delta_phi_dagger = (sqrt(2)*etal[0]*xi[0]*bar_xi[1] + sqrt(2)*bar_etal[1]l*bar_xil[0]
*xi[1]
- sqrt(2)*bar_xi[0]*etal[0]l+*bar_phi[1] + 2xetal[0]x*F
- 2xixFxbar_etal[1]) / (2*sqrt(2))
return delta_phi, delta_phi_dagger

Define the variables

eta = [1, 2] # eta is a 2-component vector

xi = [3, 4] # xi 1s a 2-component vector

bar_eta = [5, 6] # bar_eta is a 2-component vector
bar_xi = [7, 8] # bar_xi is a 2-component vector
bar_phi = [9, 10] # bar_phi is a 2-component vector

F =11 # F is a complex scalar field

Calculate the SUSY transformation rules

delta_phi, delta_phi_dagger = find_delta_phi(eta, xi, bar_eta, bar_xi)
print("delta_phi =", delta_phi)

print("delta_phi_dagger =", delta_phi_dagger)

Note that the above code assumes that the variables eta, xi, bareta, bar.i, bar,hi, andFarede finedbe forecallingthe function findgqel:
Verification Results:

Auto verification result ([’2025-02-18T05:50:03.090912+00:00’]) Status: Incorrect
Evaluations:

Evaluated by gpt-4o0 (['2025-02-05T23:00:06.120383+-00:00’]) Grade: D

Notes: The submitted solution does not correctly derive the transformation rules for d,¢ and (&,d))T. The
approach taken in the submitted solution is fundamentally flawed as it does not correctly simplify the variation
of the Lagrangian density to zero, nor does it correctly apply the transformation rules. The final expressions
for 8,¢ and (8,6)" do not match the standard solution, which are §,¢ = —v/2n¢ and (8,6)" = —/2€7.
Additionally, the Python code provided is irrelevant to the mathematical derivation required and does not
contribute to solving the problem correctly.

Attempt 3 (2025-02-04T08:52:32.4943927)

Detailed Solution: To find the transformation rule §,¢ and (5,¢)", we need to ensure that the action
associated with £ remains invariant under the given infinitesimal transformation.
The action S is given by

= f e (57)

We need to find the variation of the action §.5 under the given transformation. We can do this by using the
chain rule and the definition of the Lagrangian.
First, let’s find the variation of the Lagrangian 6.L:

oL
—6 —6 —6 —5F 58
5206+ HE0E+ 5a 06+ o (58)
Using the given transformation rules, we can substitute the expressions for §¢, 6¢, §F, and §F into the above
equation.
After some algebra, we get:

6L = —in/275"9), (8 auﬁ) \/ﬁﬁ(%) (59)

or d 2L

Now, we need to find the expressions for =% e

22

Using the definition of the Lagrangian, we get:

oL -
= = 60
s = (60)
oL
— =2F 61
3F (61)
Substituting these expressions into the equation for 0L, we get:
5L = —in/275" 8, (i€) + V27 (-2F) (62)
Simplifying the expression, we get: B
6L = \/20ij6"0,€ - 220 F (63)
Now, we need to find the expression for d¢. Using the definition of the Lagrangian, we can write:
oL
0L=—56 64
5500 (64)

Substituting the expression for §L, we get:

= oL
V275" 8,€ - 2V/27F = {T¢5¢ (65)
Simplifying the expression, we get:
\/§ —— [-
0 = ——5 1o O +nF (66)
Now, we need to find the expression for (5¢)T. Using the definition of the Hermitian conjugate, we can write:
\/577 B 1
I (67)
Simplifying the expression, we get:
V2 _
(60)' = =00 0ug + 7' F (68)
Now, we can write the final expressions for d¢ and (5¢)T:
N _
8¢ = —7770'“6&“5 +nF (69)
V2 _
(60)' = =-n' 0" 0ug + 7' F (70)

Now, let’s implement the final expressions in Python code:

from math import sqrt
import numpy as np

def find_delta_phi(eta:float, xi:float, bar_eta:float, bar_xi:float) -> tuple:

nwnn

Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)

nwnn

Define the sigma matrices
sigma_mu = np.array([[O0, 1], [1, 0]1)

Calculate the variation of phi
delta_phi = -sqrt(2)/2 * bar_eta * np.dot(sigma_mu, np.array([0, 1])) + eta

Calculate the variation of phi dagger
delta_phi_dagger = sqrt(2)/2 * np.conj(eta) * np.array([[0, 1], [1, 0]]1) + np.

conj (bar_eta)

return delta_phi, delta_phi_dagger

23

Test the function
eta = 1.0

xi = 2.0

bar_eta = 3.0
bar_xi = 4.0

delta_phi, delta_phi_dagger = find_delta_phi(eta, xi, bar_eta, bar_xi)
print ("Delta phi:", delta_phi)
print ("Delta phi dagger:", delta_phi_dagger)

This code defines a function findqelta,hithattakes f ourarguments : eta, xi, bar.ta, andbaryi.Itcalculatesthevariationo f phiandits H
Verification Results:

Auto verification result ([’2025-02-18T05:50:03.092280+00:00]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o0 (['2025-02-05T23:00:16.955535+00:00’]) Grade: C

Notes: The submitted solution shows some understanding of the problem but contains significant issues. The
approach to finding the variation of the Lagrangian §£ is not aligned with the standard solution, which uses
specific transformation rules and integration by parts to simplify the expression. The submitted solution
incorrectly attempts to derive d¢ and ((5(;3)Jr using partial derivatives of the Lagrangian, leading to incorrect
final expressions: §¢ = —§ﬁ6“8;£+ nF and (c5ng)Jr = gnfa“auf + 7' F'. These do not match the standard
solution’s results: d,¢ = —/2n¢ and ((2,(1))T = —\/2€7. The Python code implementation is irrelevant to the
mathematical solution and does not contribute to solving the problem correctly.

Attempt 4 (2025-02-04T08:53:31.155664Z)

Detailed Solution: To solve this problem, we need to find the transformation rule 8,¢ and (8,¢)" for the
action associated with £ to remain invariant.
First, we need to find the variation of the Lagrangian density under the given transformations. We have:

L =i€5" 9,6 + |09 - |FI? (71)

We need to find the variation of each term under the given transformations.
The variation of the first term is:

8(i65" 0u€) = 16(£)7" D€ + 65" 5(u€) (72)

Using the given transformations, we have:
5(8) = —iﬁn“aggaﬂé +V20,F (73)
8(0u€) = 9,06 = 8u[iV20%47 00 d + V21 F] (74)

Substituting these expressions into the variation of the first term, we get:
3(i€6" 9,8) = i[-iv/2n " Bm + V20, F16" 0,€ +i€6" 0, [iV 20471 0y + V21a F] (75)
Simplifying this expression, we get:
5(i€5"0u) = —2V20°0,$5" 5" 0,€ + V27 F5" 0,€ +i€6" Ou[iv20447" 0§ + V20a F] (76)

The variation of the second term is:

5(10¢|*) = 20,65(8" ¢) (77)

Using the given transformations, we have:

24

8(0"¢) = 03¢ = 0" [iV20%4 71O + V20 F] (78)

Substituting this expression into the variation of the second term, we get:

5(10¢[%) = 20, 60" [iV20%4 71700 p + V21 F] (79)
Simplifying this expression, we get:
5(10¢]%) = 2020, ¢0 %51 0" 8, ¢ + 2v/20, 6o O F (80)
The variation of the third term is:
5(|F]?) = -2F6F (81)
Using the given transformations, we have:
OF = iN/21i6" 8,.¢ (82)

Substituting this expression into the variation of the third term, we get:

S(1F*) = ~2F (V205" 9,¢] (83)

Simplifying this expression, we get:

S(IF|?) = —2iV2F 75" 9,.€ (84)

Now, we need to find the variation of the Lagrangian density under the given transformations. We have:

0L = 6(i€5"8,€) +5(1941”) — 6(IFI*) (85)

Substituting the expressions for the variations of each term, we get:

0L = -2V/20°0,05" 5" 0,E+V/ 275 F5" 0,€+i€6" 0[N/ 204 471 By p+V/ 2110 F1+2i7/ 20,0077 0" 8y, o+ 2/ 20, $11a 0" F-2iN/ 2 F 715" 9, €
(86)

To make the Lagrangian density invariant under the given transformations, we need to find the transformation

rule 6,¢ and (5,¢)".

We can simplify the expression for £ by using the properties of the sigma matrices and the derivatives. After

some algebra, we get:

0L = -2V/20% 0, 65" 5" 0u€ + V203 F5" 0,€ + 2020004477 0" 8y p + 2v/20,¢a 0" F — 20N/ 2F7j5" 9,6 (87)
To cancel the terms involving 7 and 7, we need to find the transformation rule 6,¢ and (8,¢)" such that:

5L=0 (88)
After some algebra, we find that the transformation rule ,¢ and (3,¢)" are given by:

6y = iv/20" 7% O (89)

(69)" = V2100"¢" (90)
Now, we can write the final executable Python code as required by the ” Answer Requirements”:

from math import sqrt

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> tuple:
nnn
Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)
delta_phi = 1j * sqrt(2) * sigma_alpha_dot_alpha_mu * bar_eta_dot_alpha *
partial_mu_phi
delta_phi_dagger = sqrt(2) * eta_alpha * partial_mu_phi_star

25

return delta_phi, delta_phi_dagger

Define the sigma matrices and the partial derivatives
sigma_alpha_dot_alpha_mu = [[1j * 1, 0], [0, -1j * 1]]
partial_mu_phi = [1, 2]

bar_eta_dot_alpha = [3, 4]

eta_alpha = [5, 6]

Call the function to find the transformation rules
delta_phi, delta_phi_dagger = find_delta_phi(eta=1, xi=2, bar_eta=3, bar_xi=4)

Print the transformation rules
print("Delta Phi:", delta_phi)
print ("Delta Phi Dagger:", delta_phi_dagger)

Note that the sigma matrices and the partial derivatives are defined as symbolic expressions, and the function
findgeltaphireturnsthetrans formationrulesassymbolicexpressions.The finalansweristhetuple(deltaphi, deltapyhiqgagger).

Final Answer: | (15v/20" .77 8,6, V200" ¢")
Verification Results:

Auto verification result ([2025-02-18T05:50:03.092623+-00:00’]) Status: Incorrect
Evaluations:

Evaluated by gpt-4o0 (['2025-02-05T23:00:26.293930+00:00’]) Grade: D

Notes: The submitted solution provides a transformation rule for d,¢ and its conjugate that is fundamentally
different from the standard solution. The standard solution finds d,¢ = —/2n¢ and (5,,(;5)T = —/2£7, while
the submitted solution gives &, = iv/20" 79,6 and (5n¢)T = V/2na0"¢*. These results are not equivalent,
indicating a misunderstanding or misapplication of the transformation rules. Additionally, the submitted
solution includes unnecessary Python code that does not contribute to solving the problem. The approach
and calculations do not align with the standard solution’s methodology or results.

Attempt 5 (2025-02-04T08:56:36.9727127)

26

2.2.4 Model: Qwen/Qwen2.5-7B-Instruct
Attempt 1 (2025-02-04T09:08:06.706975Z)

Detailed Solution: To ensure the action remains invariant under the given infinitesimal transformation, we
need to compute the variation of the Lagrangian £ under the transformation and set it to zero. Let’s start
by calculating the variation of each term in the Lagrangian.
Given the Lagrangian: -
L =i€6" 9,8 + 04| - |F|?

We need to compute the variations:

6y L = 6, (i€0"8,.8) + 5n(|a¢|2) - 5n(|F‘2)
Step 1: Variation of i€6"9,& ~ ~ ~

O (1€6" 0u&) = 1(6n€) 0" 0 + 165" 0 (n€)
Using the given transformation rules:

On€a = V208 70 + V21 F
8ns = 4&77“0238#&; +V20F
Substituting these into the variation:
8, (€6 0,8) = i(-iv/2n" 0" 50u0 + V2015 F)G" 0, +i€6" 0, (iV 20447 0v + V20 F)
Simplifying:
= Qﬁnaogﬁ.&ﬁ”&g - 2V271,F5" 0,€ + 2V/266" 0,007 00§ + 2V/266" 8 (na F)
Step 2: Variation of |0¢|> B
05 (1061%) = 61 (900" 9)
Using the transformation rule for ¢: _
Sn = iV 27j6 5" 9,8

Substituting;: B ~ ~

5n (auﬁbauqﬁ) = 8u (671¢)8M¢ + 6M¢au(6n¢)
Simplifying: _ ~ ~

= 0u(i1V2765"*0,60) 0" ¢ + 000" (—iV/20 07, 500 8)
Step 3: Variation of |F|*
. _
5n(|F|) =0y (FF)

Using the transformation rule for F': ‘
6 F = iv/20ja5"* 0,64
Substituting;: - ~ ~
8,(FF) =6,FF + F§,F
Simplifying: . B -
= (V274" 0,60) F + F(-iv/20,66"n)
Step 4: Combine all variations To ensure the action remains invariant, we need:
oL =0
Combining all the variations and simplifying, we find that the transformation rules for 6,¢ and &,¢ must be:
Sn = iV/27j6 5" 9,k
57743 = —iﬂWQUZBaué

Final Answer:

O = i\/iﬁa‘?udaauga’ 671(?3 = —iﬂnaagﬁﬁua_ﬁ

Python Code:

27

from sympy import symbols, I, sqrt

def find_delta_phi(eta, bar_eta, xi, bar_xi):
Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)
nmnn
delta_phi = I * sqrt(2) * bar_eta * (eta * xi).conjugate().transpose()
delta_phi_dagger = -I * sqrt(2) * eta * (xi * eta.conjugate()).transpose()
return delta_phi, delta_phi_dagger

Example usage
eta = symbols(’eta’)

bar_eta = symbols(’bar_eta’)
xi = symbols(’xi’)
bar_xi = symbols(’bar_xi’)

delta_phi, delta_phi_dagger = find_delta_phi(eta, bar_eta, xi, bar_xi)
print (f"delta_phi: {delta_phil}")
print (f"delta_phi_dagger: {delta_phi_dagger}")

Verification Results:

Auto verification result ([’2025-02-18T05:50:03.094971+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o0 (['2025-02-05T23:00:43.848929+-00:00’]) Grade: C

Notes: The submitted solution shows a basic understanding of the problem but contains significant issues. The
transformation rules for 6,¢ and 6, in the final answer do not match the standard solution. The standard
solution finds 8, ¢ = —v/2n€ and (6,¢)" = —/2€7, while the submitted solution provides &,¢ = iv/2745"**8,&q
and d,¢ = —i\/in%gﬁaué. The approach to compute the variation of the Lagrangian is correct, but the final

transformation rules are incorrect. Additionally, the Python code provided does not directly relate to the
problem and seems to be an unrelated attempt to compute transformation rules.

Attempt 2 (2025-02-04T09:09:00.8401017)

Detailed Solution: To ensure the action remains invariant under the given infinitesimal transformation, we
need to compute the variation of the Lagrangian £ and set it to zero. The Lagrangian is given by:

L =i€6" 9,8 + 04| - |F|?
First, we compute the variation of each term under the transformation:
Syl = 8, (166" 0,8) + 8,(100|") = 6, (|F[*)
1. Variation of the first term:
6,185 0,) = 1 (6,65" 0,6 + E5" 0,6,)

Using the given transformation: ~ ~ ~
Sn€a = —iV2n 0t 0ud + V20 F

énfa = iﬁagdﬁdauqﬁ + \/§7IO<F

Substituting these into the variation:

50(i€"0u8) = i (V21" 04400 + V2N F) £6" 0,6 + €60 (V20047 006 + V20 F))
Simplifying:

8, (€61 0,€) = 2V/ 20" E6" 0,05" D, € — 2V/ 277 FEG" D€ + i€6" D), (i\/ia;dﬁd b+ \/§naF)

28

= V20 €570, 5" D, € — 2V/2ija FEG" D6 — 220" E6" 0,08, € + 221" €670, F 9.6
= 2V €50, 5" D, € — 2V 206 FEc" D€ — 2/20" €64 8,,00,.€ + 2/ 20" €670, F 9.6
2. Variation of the second term:
85 (1091%) = 61900 9)
Using the transformation:
On = iV 2765"“0uba = iV275" O
61(0up0" @) = 0udnpd" ¢ + 8.0 6y
= 0,(iV/2715" 8,€) 0" + D, pd* (—iV 2" 0L 00 b + V2716 F')
= iV/20j5" D, £0" py + iV 20" 4 .0, PO PO — 2N/ 214 F D, 00"
3. Variation of the third term:
6y (IF|?) = 6,(FF) = F6,F + F§,F
Using the transformation:
6, F = iv/216" 0,.€
6, F = —in/20,E5"n
8, (|FI*) = F(ivV206" 9,.€) + F(-iv/20,85")
= iV2F76" 0,6 - iV2Fd, 5"
Combining all the variations:

8oL = 2V/21°E5" 8,$5" ,€ — 2V/20a FE6" 0u€ - 2V/217 86" 0,,$0,€ + 2V 20 €6 0, F D€
+i/2015" D, E0" PO, + i 2 05500 3OO — 23204 F D, 0" — iN2F 75" 0,€ + iN/2F D, E6"

To ensure invariance, we need:

oL =0
From the above, we can see that the transformation rules for 6,¢ and §,¢ must be such that the terms cancel
out. The simplest way to achieve this is to set:

Snd = iV/27745" D,k
Ond = —iv/20% 0" 0,
Now, let’s implement this in Python:

from sympy import symbols, I, sqrt, Function, diff

def find_delta_phi(eta, xi, bar_eta, bar_xi):
nmnn
Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)
phi = Function(’phi’)
bar_phi = Function(’bar_phi’)

Define the transformations

delta_phi = I * sqrt(2) #* bar_eta * Function(’bar_sigma’) * diff(xi, symbols(’mu’
))

delta_phi_dagger = -I * sqrt(2) * eta * Function(’sigma’) * diff (bar_phi, symbols
(’mu’))

return delta_phi, delta_phi_dagger

Example usage
eta = symbols(’eta’)

xi = symbols(’xi’)
bar_eta = symbols(’bar_eta’)
bar_xi = symbols(’bar_xi’)

delta_phi, delta_phi_dagger = find_delta_phi(eta, xi, bar_eta, bar_xi)
print (delta_phi)
print (delta_phi_dagger)

29

This code defines the transformation rules for 6,¢ and &,¢ and prints them.
Verification Results:

Auto verification result ([’2025-02-18T05:50:03.095673+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o0 (['2025-02-05T23:00:55.801209+00:00’]) Grade: C

Notes: The submitted solution shows a basic understanding of the problem but contains significant issues. The
transformation rules for &,¢ and §,4 are not consistent with the standard solution. The submitted solution
proposes 0,¢ = i\/ﬁﬁaé“daaﬂgm which differs from the standard solution’s d,¢ = —/2n¢. Additionally, the
solution process is lengthy and lacks clarity in deriving the final transformation rules. The Python code
provided does not contribute to solving the problem and is not relevant to the mathematical derivation
required. The approach has some merit, but the final transformation rules are incorrect, and the solution
lacks coherence in its steps.

Attempt 3 (2025-02-04T09:09:38.807119Z)

Detailed Solution: To ensure the action remains invariant under the given infinitesimal transformation, we
need to compute the variation of the Lagrangian £ and set it to zero. The Lagrangian is given by:

L = i€ 9,6 + |09 - |FI?

First, we compute the variation of each term under the given transformation.
1. Variation of the Weyl spinor term:

6 (i€ 0,8) = 1(8,8) 6% 0, + 166" 0, (8,)

Using the given transformation:

6, = —iﬁn“agﬁ.aua) +\V20,F
on€ = iﬂggaﬁd8u¢ + \/§7YaF
Substituting these into the variation:
S (i€6"9,8) =i (—i\/in“agﬁaué + ﬁﬁBF) 57 0,& +ifo" (i\/iagdﬁdayqs + \/EnaF)
Simplifying:
6y (166" 0,€) = 277%568”35”8@ - 205 FG" 0, + 266" 01147 0, $OE + 266" 00 FO,.€
2. Variation of the scalar field term:
8y (1061°) = 64 (800" 9) = By (819) 8¢ + 0u0" (6,9)

Using the given transformation:

8yt = V21 F
8y (106) = 8 (V20aF) 06 + 0,60" (V2na F)
Simplifying:
8 (101°) = 2000, F0" ¢ + 2100, 00" F
3. Variation of the gauge field term:
8y (IF?) = 8y (Fu F*™) = Fpu0a (5,,Fa5) + 0o Fluy 0% (6, F™)

Using the given transformation:
6, F = iv/2716" 0,.€

8 (IF1”) = Fiuw O (i/2716%0°€) + 0 F 0 (/2754 0€)

30

Simplifying:
50 (1FI) = iV2F0a75 %8¢ +iN/200 Fu, 0% 75" 0" €

Combining all the variations and setting the total variation to zero:
omL=0

From the above, we can derive the transformation rules for d,¢ and (&,(j))Jr by matching the coefficients of
the terms involving 1 and 7. After simplification, we find:

ond = V21 F
(577425)Jf = _\/iﬁdp

Now, let’s implement this in Python code:

from typing import Tuple

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuplel
float, float]:

nwnn

Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)

nwnn

delta_phi = sqrt(2) * eta * F
delta_phi_dagger = -sqrt(2) * bar_eta * bar_F
return delta_phi, delta_phi_dagger

This code defines the function findselta, hithattakestheparameterseta, i, bareta, andbarziandreturnsthetrans formationrules for
and (6,0)".

Verification Results:

Auto verification result ([’2025-02-18T05:50:03.096019+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-40 (['2025-02-05T23:01:04.150415+00:00’]) Grade: C

Notes: The submitted solution shows an understanding of the process of computing the variation of the
Lagrangian and setting it to zero to ensure invariance under the transformation. However, there are significant
issues: the final transformation rules for d,¢ and (5nq5)T do not match the standard solution. The submitted
solution incorrectly states d,¢ = V2o F instead of the correct On = —v/2n¢. Additionally, the approach to the
variation of the gauge field term is not consistent with the standard solution, and the Python code provided
does not align with the correct transformation rules. The solution has merit in its approach but contains
major flaws in the final results.

Attempt 4 (2025-02-04T09:10:23.2365887)
Detailed Solution: To ensure the action remains invariant under the given infinitesimal transformation, we
need to compute the variation of the Lagrangian £ and set it to zero. The Lagrangian is given by:
L = i£5"8,¢ +|0g|” - |F|*
We need to compute the variation of each term under the given transformation: 1. Variation of £€5*0,¢:
0y (65" 0uE) = 000" D€ + £5" Db

Using the given transformation:

67]5 = i\/iUgdﬁdau(b + \/§7laF
6o = -iﬂn‘*aggauq’a +V20q,F

31

Substituting these into the variation:
80(£5"0,€) = £6" 0, (V20857 Dud + V20 F) + (iV20) 0¥ 046 + V2015 F)5" 0,6
Simplifying:
6, (E6"0,€) = iV/2E6" 0,055 T 00 + iV 25" Duna F + V200" ,0,05" 0,6 + /271, F5" 0,€

Since ¥ . are constant, the first term vanishes:

8,(£5"0,€) = iV2£6" Quma F + V200" ,0,66” 0,6 + V213 F5" 0,¢
2. Variation of |0¢|*: B _ _
6,,|3¢|2 =0y (0u$0" ¢) = 0,6190" & + 00" oy

Using the given transformation:

ond = V207 F
o = _\/577F
Substituting these into the variation:

5n|8¢|2 = 8#(\/577}3)8“(5 + 3u¢3“(*\/5771’)

Simplifying:
0n|0¢|* = 2V/27F 0" 0.6 - 2V/2nF 0" $0,

3. Variation of |F|*: - - o
6y|F|° = 6,(FF) = F6,F +6,FF

Using the given transformation:
6, F = iv/2ij6" 0,.€

6, F = —in/20,65"n
Substituting these into the variation:

8|F|* = F(ivV205"9,8) + (-iV/20,85"n) F
Simplifying: - ~
6ol F|? = iN/2F 75" 0,€ — iv/20,85" nF

Combining all the variations:
0oL = iN/2£6" Duma F+iV/20% o B8u<;§6”8V§+\/§176F6"8V§+2\/§77F‘6”¢?8u¢7572\/inF(?”q&(?#q&ﬂ\/5F‘176“6‘M§7i\/§8“§'6”77F
For the action to be invariant, §,£ = 0. This implies:

on = \/iﬁF‘

o = ’\/5771:‘
Thus, the transformation rules for ¢ and ¢ are:

on = \/iﬁF

6y = —/2nF

Final Answer:

dnd = \/5"7F7 6n‘73 = _\/EWF

Now, let’s convert this into Python code:

32

from typing import Tuple

def find_delta_phi(eta: float, xi: float, bar_eta:

float,
nnn
Returns the SUSY transformation rules for phi
a tuple (delta_phi, delta_phi_dagger)
delta_phi = sqrt(2) * bar_eta * bar_xi
delta_phi_dagger = -sqrt(2) * eta * xi
return delta_phi, delta_phi_dagger

from math import sqrt

def find_delta_phi(eta: float, xi: float, bar_eta:

float,
Returns the SUSY transformation rules for phi
a tuple (delta_phi, delta_phi_dagger)
win
delta_phi = sqrt(2) * bar_eta * bar_xi
delta_phi_dagger = -sqrt(2) * eta * xi
return delta_phi, delta_phi_dagger

Verification Results:

float,
float]:

and its

float,
float]:

and its

bar_xi: float) -> Tuplel

Hermitian conjugate:

bar_xi: float) -> Tuplel

Hermitian conjugate:

Auto verification result ([2025-02-18T05:50:03.096505+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-40 ([2025-02-05T23:01:16.603257+00:00"]) Grade: C

Notes: The submitted solution shows a basic understanding of the problem but contains significant issues.
The transformation rules derived for §,¢ and d,¢ do not match the standard solution. The standard solution
finds 6,¢ = —/2n¢ and (5n¢)t = —/2£7, while the submitted solution incorrectly concludes On = V27 F and
6,@7 = —v/2nF. The approach to compute the variations is partially correct, but the final expressions for
the transformations are incorrect. Additionally, the Python code provided does not align with the problem’s

context and is irrelevant to the mathematical solution.

Attempt 5 (2025-02-04T09:11:01.9231847)

Detailed Solution: To ensure the action remains invariant under the given infinitesimal transformation,
we need to compute the variation of the Lagrangian £ under the transformation and set it to zero. The

Lagrangian is given by:

L = i€5" 9. + |09 - |FI?

We need to compute the variation of each term under the transformation: 1. Variation of i5*9,.¢:

5(3€6"0,€) = 105" 0,6 + €61 0,06

Using the given transformation:

5§a = i\/io'gdﬁda“(ﬁ + \/EnaF
3E; = 71'\/57;%563@ +V20q,F

Substituting these into the variation:

8(i€"0,u€) = i(=iV2n" 0" ;0,6 + V203 F)5" 0,6 + 166" 0, (iV/205a” B+ V2a F)

Simplifying:

5(i5" 0,8) = 2v/2n" " 500957 0,€ - 2V271; F 5" 0, + 2iN/266" 0,047 0, ¢ + 2V/ 266" Buna F'

33

2. Variation of |9¢|?:

5(106[°) = 6(8u00"¢) = 860" ¢ + 0u00" 56
Using the transformation:

8¢ =27 F

3(0u 0" ¢) = 0u (V20" ¢ + 000" (V2IF)
Simplifying:

5(106[°) = 2v/20,710" FO" ¢ + 2v/20,00" 710" F
3. Variation of |F|*:

S(IF*)=8(F'F)=F'6F +6F'F
Using the transformation:
OF = i/2ij6" 0,&
6F' = —iv/20,&5"n

S(|F*) = F1(iv276" 0.8) + (V276" 9,.8) ' F

Simplifying: _
S(IF)?) = iv/2F 75" 8,¢ + iv/20,.E6"nF

Combining all the variations, we set the total variation to zero:
0L=0
2v2n%c" Bauq_ﬁ(_f"81,5—2\/5775F&“8u§+2iﬂf&“@uazdﬁd&,QMQ\/55_6“8;”7&1?42\/56#178“F8"¢+2\/§8u¢8“ﬁ8"F+i\/§FTﬁ§“8u£+i\/§

To find the transformation rules for §,¢ and ((5nq§)T7 we need to match the coefficients of 7 and % on both
sides of the equation. This will give us the necessary conditions for the transformation to be a symmetry.
From the above equation, we can see that the terms involving 1 and 7 must cancel out. This implies:

oy = —V27F
(6,0)" = —V2nF

Now, let’s implement this in Python:

from sympy import symbols, I, sqrt

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> tuple:

nwnn

Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)

delta_phi = -sqrt(2) * bar_eta * bar_xi
delta_phi_dagger = -sqrt(2) * eta * xi
return delta_phi, delta_phi_dagger

This code defines the transformation rules for 8,6 and (8,4)" based on the derived expressions.
Verification Results:

Auto verification result ([2025-02-18T05:50:03.101221+-00:00]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o0 (['2025-02-05T23:01:29.166988+00:00’]) Grade: C

Notes: The submitted solution shows a basic understanding of the problem, but there are significant issues.
The transformation rules derived for d,¢ and (8,4)" do not match the standard solution. The submitted
solution incorrectly states d,¢ = —V/27F and ((5,,(;§)Jr = —/2nF, whereas the standard solution gives One =
—V2n¢ and (6,6)" = —/2€i. The approach to finding the transformation rules is not aligned with the
standard method, and there are errors in the application of the transformations and simplifications. The
solution process lacks clarity and coherence in deriving the correct transformation rules.

34

2.2.5 Model: Qwen/QwQ-32B-Preview
Attempt 1 (2025-02-04T09:29:59.2483357Z)

Detailed Solution: I’'m going to tackle this problem step by step. The goal is to find the transformation
rules for the scalar field ¢ and its Hermitian conjugate ¢ such that the action associated with the given
Lagrangian £ remains invariant under the specified supersymmetry transformations.

First, let’s understand the given Lagrangian and the transformations:

The Lagrangian is:

L =" 0,6 + 104> - |F|?

Where:

- £ is a 2-component Weyl spinor.

- ¢ and F' are complex scalar fields.

The proposed infinitesimal transformation is:

Onba = V20" 1% 00 + V200 F
And its conjugate:

Ouls = —i\/inaagﬁaqu +\/20,;F
Additionally, the transformations for F' and F are given:

60 F = iv/20a0" 0,60 = iN/2016" 0,€

6, F = —in/20,65"n
We need to find 6,¢ and 6, such that the action remains invariant under these transformations.
Step 1: Variation of the Lagrangian
To ensure the action is invariant, the variation of the Lagrangian under the supersymmetry transformations
should be a total derivative, which integrates to zero over spacetime.
So, we need:

Sy L = 9, K"

For some vector K*.
Let’s compute 6, L:

0L = 16, (£5"0,8) + 6,(|1001*) - 8, (|1FI*)

We need to compute each term separately.
Step 2: Compute 6, (£5"0,.€)
Using the product rule:

&,(5&“8,@) = (5n5)5uau§ + 5_5”8”(57,5)

Substitute the given transformations:
Oq€5 = —i\/inaagﬁaqu+ Vo, F
O = 1V/2004 71" 0ud + V210 F
Plugging these in:
(08)5" 0 = (V2% 8 + V2073 F)5" 0,6

gﬁuau(éng) = gﬁuau(i\/ilf;df]d b+ \/inaF)

This looks quite involved. Maybe there’s a smarter way to handle this.
Step 3: Consider the full variation of the action

35

Instead of varying the Lagrangian directly, perhaps it’s better to consider the full action and integrate by
parts to find the conditions on d,¢ and d,¢.
The action is:

S:[d4m£

5,5 =0

We need:

Which implies:

e e [dwoe [ain(Pses®se 0Ly o s o 0L, 0L
6n/dx£—fd :cén[l—[d :c(6€5,7£+ P S a$6n¢+aF5nF+8F5nF)

Given the Lagrangian:
T 2 2
£ =i€5" 0,6 +106f - |F|
Compute the derivatives:

oL

- 16" 0, €
oL ., _
875 =10, (5"¢)
oL .o
2 0¢
0L _o-
— =0
o ¢
oL
or =
9L _ oF
oF
Wait, actually, |0¢]* = 0,¢0"® + 0,00" ¢, so the derivatives with respect to ¢ and ¢ need to be computed
carefully.
Let’s correct that.
Step 4: Correct computation of derivatives
Given:
06" = 0,00
Thus:
8‘a¢|2 v
=03
9(0v9)
Aogl _
L 9"
0(0,¢)

And for the Lagrangian:

L =i5" 0, + 8,00" ¢ — |F|?

The Euler-Lagrange equations give:

0 9(0.9)
2% o)
96 "\ 0(0.0)

But for the variation, we have:

55- [d's (4475¢ a<au¢)5(D) + 8(M)é(amn)

This seems too involved. Maybe a better approach is to require that the variation of the Lagrangian is a total
derivative.

Step 5: Require §,L = 9, K"

Let’s compute J,L and set it equal to a total derivative.

First, compute 6,L:

6oL =i(0,€)5" 0u€ +i€6" 0, (0n€) + 2Re (0,6, (8" $)) — 2Re (F5,F)
This is still quite complicated. Maybe focusing on the transformation properties and trying to find a consistent
8,¢ and §,¢ is a better way.
Step 6: Consider the transformation properties
Looking at the given transformations for ¢ and £, and the expressions for §,F and 6, F, perhaps there is a
pattern or a way to relate these to find &,¢ and d,¢.
Notice that in supersymmetry transformations, scalar fields often transform into fermions, and vice versa.
Given that ¢ is a scalar, its transformation typically involves the fermions in the theory.
Let’s assume:

One =an-§&+b terms

But need to be more precise.

Step 7: Use the closure of the supersymmetry algebra

In supersymmetry, the algebra should close, meaning that two successive supersymmetry transformations
should result in a translation or some other symmetry.

However, this might be too advanced for our current level. Maybe we can look for a simpler approach.

Step 8: Consider the invariance of the Lagrangian under the transformation

Let’s consider varying the Lagrangian under the given transformations and set the variation to zero, up to a
total derivative.

Given the complexity, perhaps it’s better to look for a known result or a similar problem in literature.

Step 9: Look for a similar model or known transformation

This Lagrangian resembles that of a supersymmetric theory, possibly a simple supersymmetric quantum
mechanics or a lower-dimensional supersymmetric model.

In supersymmetric theories, scalar fields often transform into fermions under supersymmetry transformations.
Let’s consider that §,¢ = \/577 - &, where - represents some contraction of indices.

Similarly, §,¢ = /27 - €.

But need to check if this makes the Lagrangian invariant.

Step 10: Propose a trial transformation

Let’s propose:

n = /20

677(%_5 = \/55_77
Then, compute the variations of the Lagrangian components and see if they cancel out appropriately.

Step 11: Compute 6, L with the proposed transformations
First, compute 0, (¢£6"9,.&):

8y (165" 9u€) = 1(8,€)5" Du€ + i€ 0. (8n€)

Substitute the given transformations:
5n€ = —iﬁn“agﬁ.au& + \/577513
5n = iv/20" 77 0ud + /20 F

This substitution will be quite involved, and it’s clear that this approach is getting too complicated for a
step-by-step solution here.

37

Step 12: Consider a different strategy

Given the complexity and the time constraints, perhaps it’s better to look for a pattern or a known result in
supersymmetry transformations.

In many supersymmetric theories, the scalar field ¢ transforms as:

6n¢ = \/57_75

And its conjugate:

oy = \/5577
Assuming this is the case here, we can proceed to verify if this makes the Lagrangian invariant.
Step 13: Verify the proposed transformations
Given:

Sn = V2076

oy = \/5577
We need to check if these, along with the given transformations for £, €&, F, and F, make the Lagrangian
invariant up to a total derivative.
Given the time constraints, I’ll assume this is the correct transformation rule.
Final Answer:

Sn¢ =206 and 6,6 =2En

Final Solution To solve this problem, we need to find the transformation rules for the scalar field ¢ and its
Hermitian conjugate ¢ such that the action associated with the given Lagrangian remains invariant under the
specified supersymmetry transformations.

Approach

1. Understand the Given Lagrangian and Transformations: - The Lagrangian is given by:

L =1i€6"9,& +10¢[° - |FI?

- The transformations for &, £, F, and I are provided. - We need to find 6,¢ and §,4 to ensure the action
remains invariant.
2. Propose Transformation Rules: - Based on standard supersymmetry transformations, propose:

ond = V20€, 8,4 =26

3. Verify the Proposed Transformations: - Substitute the proposed transformations back into the
Lagrangian and check for invariance.

Solution Code

To implement the transformation rules in Python, we need to define a function that computes 6,¢ and &,¢
given the parameters 7, £, 7, and &.

from math import sqrt

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> tuple:

nnn

Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)

nnn

delta_phi = sqrt(2) * bar_eta * xi
delta_phi_dagger = sqrt(2) * bar_xi * eta
return (delta_phi, delta_phi_dagger)

Explanation

1. Transformation Rules: - The transformation for ¢ is d,¢ = V27€. - The transformation for ¢ is

On¢ = V28n.

2. Function Implementation: - The function findselta,hitakesasinputthein finitesimal fermionicparametersn
and 7, and the spinor fields £ and €. - It computes the transformations using the proposed rules and returns

the results as a tuple.

38

This approach ensures that the action associated with the Lagrangian remains invariant under the specified
supersymmetry transformations.
Verification Results:

Auto verification result ([2025-02-18T05:50:03.101800+-00:00]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o0 (['2025-02-05T23:01:42.581533+00:00’]) Grade: C

Notes: The submitted solution shows a basic understanding of the problem and attempts to derive the trans-
formation rules for the scalar field ¢ and its Hermitian conjugate ¢ under supersymmetry transformations.
However, there are significant issues: the proposed transformations d,¢ = \/5175 and §,¢ = \/5517 are incorrect
compared to the standard solution, which gives §,¢ = —\/§n§ and ((5n<;5)Jr = —\/Egﬁ. The solution lacks a clear
derivation of these transformations and does not adequately verify the invariance of the Lagrangian. The
approach is overly complicated and does not effectively use the given transformations for ¢, &, F, and F.

Attempt 2 (2025-02-04T09:35:52.2979727)

Attempt 3 (2025-02-04T09:37:55.0479917)

Detailed Solution: To solve this problem, we need to find the transformation rules for the scalar field ¢
and its Hermitian conjugate ¢ such that the action associated with the Lagrangian £ remains invariant under
the given supersymmetry transformations. The Lagrangian is given by:

L =i€5" 9. +|0¢|* - |FI”
where £ is a 2-component Weyl spinor, and ¢ and F' are complex scalar fields. The proposed infinitesimal
transformation is:

Onba = V20" %00 + V200 F
and the transformations for &, I, and F' are provided accordingly. Our task is to determine &,¢ and &,¢.
Step 1: Understand the Problem
We need to ensure that the action S = f d*z £ is invariant under the given supersymmetry transformations.
This means that the variation of the Lagrangian under the transformations should be a total derivative, which
integrates to zero over spacetime.
Step 2: Devise a Plan
1. Compute the variation of the Lagrangian under the given transformations. 2. Express this
variation in terms of the fields and their derivatives. 3. Identify the terms that are not total
derivatives and set them to zero by choosing appropriate transformation rules for ¢ and ¢.
Step 3: Carry Out the Plan
Variation of the Lagrangian
First, let’s write down the Lagrangian again for reference:

L =i€5"9,¢ +10¢|” - |F|?

We need to compute 6,L. This involves computing the variations of each term in the Lagrangian.
Variation of i€6"9,.&
Using the product rule:

O (i€5" 0u) = i(09€)T" D€ + 16" 0 (6n8)

Given:
6n£a = iﬂogaﬁdauqﬁ ar \/§7laF

(Sﬂéﬂ = —Z'\/i’f]a(fggau(l_ﬁ + \/EﬁBF

Substituting these into the variation:

39

8, (i€5"0,€) = i(*i\/inaff:@aué + ﬁﬁgﬁ')&“@uf + ié&”@u(i\/ia;dﬁa Lo+ \/inaF)

This expression is quite involved, and we need to simplify it step by step.
Variation of |9¢|*

041” = 9" $0,.¢
5n(|a¢|2) = 571(8“‘156#‘13) = (5718“‘15)8#‘5 + 8”‘%5(5778#‘5)

= 8" (610)0u + 0" $0,u (5, 0)

Variation of |F|?

|F|* = FF

6n(|F|2) = (677F)F+F(67]F)

Given:

6, F = iv/216" 8,€

6, F = —in/20,66"n
Substituting these:

5n(|F‘2) = (i\/ﬁﬁ&“@ug)p + F(—iﬁau@?“n)

Step 4: Combine All Variations
Now, combine all the variations to get d,L:

8L = 6, (i€6"0,8) + 6, (100") - 5,(|1FI*)

Substitute the expressions derived above:

1L = [i(=iV/20" 0" 306 + /213 F)5" 0 + 166" Dy (iv/ 20 Dt + V2 F) [+[0 (310)9 + 0" 60,(8,6) [(V205" 0,6) F + F (=

This expression is quite complex, and to proceed further, we need to simplify it by using properties of spinors
and gamma matrices.

Step 5: Simplify the Expression

Given the complexity of the expression, it’s essential to use identities involving spinors and gamma matrices
to simplify it. For instance, we can use the fact that ¢, and 1Y are related, and that certain contractions
can be expressed in terms of derivatives or other fields.

However, due to the length and complexity of this step, it’s more efficient to consider the overall symmetry
and look for terms that can be canceled by choosing appropriate &,¢ and &, ¢.

Step 6: Determine &,¢ and 6,¢

To ensure that the action is invariant, the variation 6,L£ should be a total derivative. Therefore, we need to
choose §,¢ and 6,¢ such that any non-derivative terms in §,L cancel out, leaving only terms that can be
written as 0, K* for some vector K*.

Given the transformations provided for &, €, F, and F, and considering the structure of the Lagrangian, a
reasonable assumption is that d,¢ is linear in 7 and involves .

Let’s propose:

Sn = V2076
571(13 = \/5577

We need to verify if these transformations, when substituted into ¢, £, make it a total derivative.
Step 7: Verify the Transformation

40

Substitute 0,¢ = V27¢ and Sy = V2€n into the variations computed earlier and check if onL is a total
derivative.

Given the complexity of this step, it’s recommended to perform explicit calculations, possibly using a computer
algebra system designed for tensor or spinor calculations, to ensure all terms are properly accounted for.
Final Answer:

After performing the necessary calculations and ensuring that the action remains invariant under the proposed
transformations, we find that the transformation rules for ¢ and ¢ are:

6n¢ = \/5775

oy = \/5577
Final Solution Code
To implement the transformation rules in Python, we need to define a function that takes the parameters 7,
¢, 7, and € and returns the transformations d,¢ and &,¢.
Given that n and £ are spinors, and for simplicity, we assume they are represented as complex numbers in
this context, the code can be written as follows:

from math import sqrt

def find_delta_phi(eta: complex, xi: complex, bar_eta: complex, bar_xi: complex) ->
tuple:

nwnn

Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)

delta_phi = sqrt(2) * bar_eta * xi
delta_phi_dagger = sqrt(2) * bar_xi * eta
return (delta_phi, delta_phi_dagger)

Explanation

- Function Definition: The function findgelta,hitakes fourcomplexnumbersasinput

eta, xi, barcta, andbar,i, representingthespinorparametersandfields.—Transformation Rules: Itcomputesthetransformatzonsd
and d,¢ using the derived formulas. - Return Value: It returns a tuple containing the computed transfor-

mations for ¢ and .

Verification Results:

Auto verification result ([2025-02-18T05:50:03.102229+00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o0 (['2025-02-05T23:02:07.721703+00:00’]) Grade: C

Notes: The submitted solution shows a basic understanding of the problem, aiming to find the transformation
rules for the scalar field ¢ and its Hermitian conjugate ¢ under supersymmetry transformations. However,
there are significant issues: the final transformation rules é,¢ = V27€ and Sy = V2€n do not match the
standard solution, which states §,¢ = —/2n¢ and (6,7¢>)Jr = —/2€7. The approach lacks the correct application
of the integration by parts and simplification steps necessary to derive the correct transformation rules. The
solution also includes redundant and incorrect steps, such as the Python code, which is not relevant to the
mathematical derivation required. Overall, the solution needs a more accurate application of the mathematical
techniques and a correct final answer.

Attempt 4 (2025-02-04T09:43:13.6795417)

Detailed Solution: Alright, I’ve got this problem here involving some field theory with spinors and scalars.
The goal is to find the transformation rule for the scalar field ¢ and its Hermitian conjugate under a given
symmetry transformation, such that the action remains invariant.

First, I need to understand the Lagrangian and the transformation properties of the fields involved. The
Lagrangian is given by:

41

L =1i€6"9,& +10¢[° - |FI?

Here, ¢ is a 2-component Weyl spinor, and ¢ and F are complex scalar fields. The transformation we're
considering is an infinitesimal one, generated by a spacetime-independent fermionic parameter 7.
The transformation rules provided are:

Onba = iV 20" 1% 0udp + NV 21o F
And for the conjugate spinor:
n€p = —iﬁnaagsaué + \/QﬁBF

Also, the transformations for F' and F' are given:
OnF = iN/20j6 0" 00 = V205" 0,8

60 F = —-i/20,€5"n
Our task is to find 6,¢ and &,¢ such that the action remains invariant under these transformations.
To approach this, I need to ensure that the variation of the Lagrangian under the transformation is a total
derivative, which would then not affect the action upon integration over spacetime.
So, let’s compute the variation of the Lagrangian 6, £ and set it equal to a total derivative.
First, recall that the Lagrangian is:

L = i£5"8,¢ +|0g|” - |F|*
We need to compute the variation of each term separately.
1. Variation of 1" 9,¢:

oy (if_‘?uaug) = i(&f)&”@,@ + if&”au(&,ﬁ)
Substituting the given transformations:
:u-mﬁ%%ﬁgmé+V%%Fﬁﬂag+ﬁéwyuvﬁd;ﬁ%h¢+VZMF)

This looks quite involved. Maybe there’s a smarter way to handle this.
2. Variation of |9¢|?:

06[* = 0" 0,
So,

31 (1061°) = 0" (619)9u + 8" $0,u(3,9)

3. Variation of |F|*:
|F|* = FF
Thus,
6n(|F|2) = (6, F)F + F(6,F)

Substituting the given transformations for F' and F"

= (iV2016"0,¢)F + F(-iv/20,£5"n)
Now, combining all these variations:

L = 1(89€)5" 0 +i€6" 0, (6,8) + 0" (8,0)0ud + 0" $0,, (51 $) + (V275" 0, E) F + F(-i/20,€6"n)
This expression is quite complicated, and it’s not immediately clear how to simplify it to find d,,¢ and 5nq§.
Maybe there’s a better way to approach this problem.
Perhaps I should consider the invariance of the action under the transformation, which implies that the
variation of the Lagrangian is a total derivative. So, I can set:

42

SyL = 0, K"

For some vector K*. Then, the action remains invariant up to boundary terms.

But this seems too vague. Maybe I need to look for a symmetry that resembles supersymmetry, given the
transformation properties.

Looking back at the transformation rules, they seem similar to supersymmetry transformations, where
fermions transform into bosons and vice versa. Given that n is a fermionic parameter, and £ is a fermion,
while ¢ and F' are bosons, this aligns with SUSY transformations.

In standard supersymmetry, the transformation rules relate fermions and bosons in a specific way to maintain
the invariance of the action. Maybe I can infer the transformation for ¢ by considering the closure of the
algebra or by ensuring that the commutator of two supersymmetry transformations closes on a translation.
However, that might be too involved for this problem. Perhaps a simpler approach is to consider the variation
of the Lagrangian and set it equal to a total derivative, then solve for §,¢ and &, .

Let me try that.

First, write down the variation of the Lagrangian:

Oy L = i(89E) 5" Ok +iE5" D (0n€) + 0" (8, $) 0 + 0" 30, (646) + (iV/2015" 0,€) F + F(=in/20,€5")

Now, substitute the given transformations for §,¢ and §,¢:
&,{B = —i\/inaaggaqu + \/5175-[5'

67]60(= 'L'\/io'gd’ﬁda#(]ﬁ + \/57701F

Plugging these into the variation of the Lagrangian:

onL :i(*i\/inagggau(#?*\/iﬁﬁF‘)5Bﬂau§8+igdauaaau(i\/iagdﬁdau‘f"“\/inaF)+a”(571‘1’)8#‘27*8”‘178#(577‘2’)*(1'\/5775/‘8#5)1?‘*}7(*1’\/5

This is getting too messy. Maybe I need to consider integrating by parts or looking for expressions that can
be written as total derivatives.

Alternatively, perhaps I can consider the transformation of the fields and try to find §,¢ such that the variation
of the Lagrangian cancels out the variations from the other fields.

Let me assume that 6,¢ = some expression involving 7 and &, and similarly for &,¢, and then solve for these
expressions by requiring that §, L is a total derivative.

This seems like a reasonable approach, but it’s still quite involved. Maybe there’s a pattern or a symmetry I
can exploit.

Wait a minute, in supersymmetry, the transformation rules for the fields are designed such that the action is
invariant. Perhaps I can look up the standard supersymmetry transformation rules for a theory with spinors
and scalars and see if they match the given transformations, and then infer the missing transformations for
¢ and ¢.

In A =1 supersymmetry in 4 dimensions, the transformations typically look like:
Snp = N2

6yt = iN/270" 8,4 + other terms

Comparing this to the given transformations, it seems similar, but I need to be careful with the indices and
the exact form.
Given that, perhaps the transformation for ¢ is:

Snp = V21€
And for ¢:

6n(£ = \/577‘5_
But I need to check if this makes the Lagrangian invariant.

Let me try plugging this into the variation of the Lagrangian and see if it works.
First, compute 6,¢ = v/2n¢, and 6,¢ = /27¢.

43

Then, the variation of |9¢|® is:

8,(10¢]%) = 8" (3,9) 0 + 0" 3 (69 @) = 0" (V20€) D + 0" 90, (V207E) = V/21D" €0, + /270" O, €

Now, the variation of i£5"9,¢ is:

i(69€)5" D€ +i€5" 9, (6nE)
Substituting the given transformations:

= i(=iv/2n% " $Oud + V205 F)5°° 0,65 +i€a6" 0, (iV20 1 471" 00 + V/20a F)
This is still quite complicated. Maybe I need to use some identities involving the sigma matrices.
Recall that * = (1,-5) and " = (1,5), where ¢ are the Pauli matrices.
Also, 05551/,85 = g" 68 +ictP where ot = 1[¥*,~"], but I might not need that here.
Alternatively, perhaps I can consider the full variation and look for terms that can be canceled out by choosing
appropriate 6,¢ and 6,¢.
This is getting too time-consuming. Maybe there’s a smarter way to approach this.
Let me consider the invariance condition:

Syl = O, K"

for some vector K*. Then, the action remains invariant.

So, T need to compute &, L and set it equal to 9, K*, then solve for §,¢ and &, .

This seems like a standard procedure in field theory for finding symmetry transformations.

Alternatively, perhaps I can consider the Noether current associated with this symmetry and work from there.
Wait, maybe I should consider the commutator of two supersymmetry transformations, which should give a
translation.

But that might be too involved for this problem.

Let me try to make an ansatz for 6,¢ and 6,¢, based on the given transformations.

Looking at the transformation of &:

6n£a = iﬂogaﬁdauqﬁ arF \/§7laF

It seems like ¢ is transforming into &, suggesting that d,¢ might involve &.

Similarly, from the transformation of ¢:
Onks = —i\/inaagﬁaqu + \/ﬁﬁBF

This suggests that ¢ might be transforming into &.
Therefore, perhaps:

Snd = V2n€

577& = \/5775
Let me check if this makes the Lagrangian invariant.
First, compute 6,L:

8L = 8, (i€"0,€) + 8,101 = 6, (|FI*)

Compute each term separately.

1. 6,(i€5"0,€):

= i(8,8)5" 9u€ +i£5" 0, (8,8)
Substitute the given transformations:
= i(~iV20" 0!, 0ud + \/5775-15)6653“55 +i€50" "0, (V2046 T 00 + V21 F)

This is still quite involved. Maybe I can simplify it by using the properties of the sigma matrices.

2. 6,(10¢[%):

44

= 0"(619)0ud + 0" $0, (81 9) = V200" E0u + V200" $,.E
3. 8, (IFI*):

= (6,F)F + F(5,F) = (iV/2i16" 8,6) F + F(-iv/20,£6"n)

Now, combining all these:

0nL = [complicated expression]

It’s not clear yet. Maybe I need to consider integrating by parts to see if some terms cancel out.
Alternatively, perhaps there’s a smarter way to approach this by considering the SUSY algebra or the invari-
ance conditions.

Wait, maybe I can look for a reference or a standard textbook on supersymmetry to see how such transfor-
mations are derived.

Upon checking a standard reference, I find that in A/ = 1 supersymmetry in 4 dimensions, the transformation
rules for a chiral multiplet are:

Snp = V21
Sntp = iv/200" D — V/2mm¢

6n F = 2i7/200" 8,1) — 2mn

Comparing this to the given transformations, it seems similar, but with some differences.
In our problem, the transformation for ¢ is:

Onba = iV 20" 1%0ud + NV 21u F
Which resembles the SUSY transformation for the fermion in a chiral multiplet, but without a mass term.
Similarly, the transformation for F' is:

6, F = i/27i6" 9,.€
Which also matches the SUSY transformation for the auxiliary field in a chiral multiplet.
Therefore, it’s reasonable to assume that the transformation for ¢ is:

Snp = /20t
And for ¢:
S = /20
Let me verify if these transformations make the Lagrangian invariant.

Compute 6, L:
First, 0, (165" 0,€):

= i(0,€)5" 9u€ +i€0" 0,,(8,€)
Substitute the given transformations:
= i(=ivV21%0" ;0,6 + V213 F)5 8,85 + €550, (iv/20 5471 00 + /20 F)

This is still quite involved, but perhaps some terms will cancel out when combined with the variations of the
other terms in the Lagrangian.
NeXt7 5”1(|a¢|2)

= 0" (670)0ud + 0" 30, (3,0) = V210" €D, + /270" $3, €
And 6,(|F[?):

= (0,F)F + F(6,F) = (iV/2i6"8,6) F + F(-i/20,€5"n)

Now, combining all these variations:

45

8L = i(~iv/2n 0" Bau(;_5+\/§ﬁBF)5'BB DuEp+i€ad™ 8, (I 20441 0y p+/ 210 F) +3/ 200" €0, 9+ 2110" 38, E+(iN/ 216" €) F+ F (—in/2

This is still a mess. Maybe I need to use some identities involving the sigma matrices to simplify this
expression. '

Recall that 6* = (1,-6) and 0" = (1,5), and that agéﬁ”m = g" 8P +iohvh.

Alternatively, perhaps I can consider writing everything in terms of spacetime derivatives and look for total
derivatives.

This is getting too complicated. Maybe there’s a different approach.

Let me consider that the action is invariant under the transformation, which means that the variation of the
Lagrangian should be a total derivative. So, I can set:

8yL = 8, K"

Then, the action remains invariant up to boundary terms.
So, I need to find K* such that:

5yl - 0 K" =0

This is the standard procedure for checking invariance under a symmetry transformation.

However, given the complexity of the expressions involved, it might be more efficient to assume that the
transformation for ¢ is 8,¢ = \/2n€, and verify if this choice makes &,L a total derivative.

If it does, then this is the correct transformation rule. If not, I need to adjust my ansatz accordingly.

Given the time constraints, I'll proceed with this assumption and check its validity.

So, assuming;:

oy = \/5775

6n¢ = \/57_75
Then, compute d,L and see if it’s a total derivative.
After performing the necessary calculations (which are quite involved and not shown here for brevity), I find
that indeed 6, L can be expressed as a total derivative, confirming that this is the correct transformation rule
for ¢ and ¢.
Therefore, the transformation rules are:

Snd = V2n€

Onp = V/217€
Now, for the second part of the problem, I need to implement these transformation rules in Python.
However, there seems to be a misunderstanding in the problem statement. The transformation rules involve
spinor fields and derivatives, which are not straightforward to implement in a simple Python function without
specifying the representations of the fields and the spinor indices.
Moreover, the problem mentions that the code should not contain any externally defined variables, including
physical constants, which suggests that I need to implement a general function that takes the fields and
parameters as inputs and returns the transformation.
Given that, I’ll define a function findqelta,hithattakesthein finitesimal fermionicparametereta, thespinor fieldxi, theconjugatepa
and 4, ¢.
However, since the fields are spinors, which are multi-component objects, I need to handle their indices
appropriately. For simplicity, I’ll assume that xi and barziarerepresentedasarraysorvectorsinPython.
But to keep it simple, I'll assume that xi and eta are 2-component spinors, represented as lists or arrays of
length 2, and barziandbar.taaretheirconjugates.
Given that, the transformation rules can be implemented as dot products.
Here’s how I can implement the function:

import numpy as np

def find_delta_phi(eta, xi, bar_eta, bar_xi):
delta_phi = np.sqrt(2) * np.dot(eta, xi)

46

delta_phi_dagger = np.sqrt(2) * np.dot(bar_eta, bar_xi)
return delta_phi, delta_phi_dagger

This function takes the fermionic parameters and the spinor fields as inputs and returns the transformations
of ¢ and .

However, the problem specifies that the function should take eta:float, xi:float, bar.ta : float,bargi :
floatandreturnatupleof floats. T hisseemsinconsistentwiththenatureo fthe fields, whicharespinorsandshouldbemulti—
componentobjects.

Perhaps the problem expects a simplified version where the spinors are represented by single complex numbers,
but that seems unlikely.

Alternatively, maybe the fields are being treated as scalars for simplicity, but that doesn’t align with the
original Lagrangian, which includes spinor fields.

Given the confusion, I'll proceed with the assumption that the fields are represented as arrays, as shown
above.

But to strictly adhere to the problem’s requirements, I’ll modify the function to accept complex numbers,
assuming that the spinors are being represented by single complex numbers.

Here’s the adjusted function:

import cmath

def find_delta_phi(eta: complex, xi: complex, bar_eta: complex, bar_xi: complex) ->
tuple:
sqrt2 = cmath.sqrt(2)
delta_phi = sqrt2 * eta * xi
delta_phi_dagger = sqrt2 * bar_eta * bar_xi
return delta_phi, delta_phi_dagger

This function takes the fermionic parameters and spinor fields as complex numbers and returns the transfor-
mations of ¢ and ¢ as complex numbers.

However, this is a significant simplification and may not accurately represent the original field theory problem,
where spinors have multiple components.

Nonetheless, given the constraints of the problem, this should suffice.

Final Answer:

a6 =V20¢ and 8yé=V20E

Verification Results:

Auto verification result ([2025-02-18T05:50:03.102825+-00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o0 (['2025-02-05T23:02:17.583369+00:00’]) Grade: C

Notes: The submitted solution shows a basic understanding of the problem and attempts to derive the
transformation rules for the scalar field ¢ and its conjugate. However, there are significant issues in the
approach. The solution is lengthy and lacks clarity, with many unnecessary steps and repeated calculations.
The final transformation rules d,¢ = /2n¢ and §,¢ = /27 are incorrect compared to the standard solution,
which states ,¢ = —v/2n¢ and (8,¢)" = —v/2€7. The solution does not correctly simplify the variation of the
Lagrangian to a total derivative, and the Python implementation is overly simplified and does not accurately
reflect the complexity of the problem. The approach has some merit, but the execution is flawed.

Attempt 5 (2025-02-04T09:44:38.2392867)

Detailed Solution: To solve this problem, we need to find the transformation rules for the scalar field ¢
and its Hermitian conjugate ¢ such that the action associated with the Lagrangian £ remains invariant under
the given supersymmetry transformations. The Lagrangian is given by:

L =if5" 0,6 + 104> - |F|?

47

where £ is a 2-component Weyl spinor, and ¢ and F' are complex scalar fields. The proposed infinitesimal
transformation is:

67]£a = iﬂagdﬁd(ﬂud) + \/inaF

and the corresponding transformations for 5_[;, F, and I are provided. Our task is to determine 6,¢ and 4, .
Step 1: Understand the Problem

We need to ensure that the action S = [d*z £ is invariant under the given supersymmetry transformations.
This requires that the variation of the Lagrangian under the transformations is a total derivative, which
integrates to zero over spacetime.

Step 2: Devise a Plan

1. Compute the variation of the Lagrangian under the given transformations. 2. Express this
variation in terms of the fields and their derivatives. 3. Identify the terms that are not total
derivatives and set them to zero by choosing appropriate transformation rules for ¢ and é.
Step 3: Carry Out the Plan

Variation of the Lagrangian

First, let’s write down the Lagrangian again for reference:

L =1i€5"9,& + 109 - |FI?

We need to compute 4, L. This involves computing the variations of each term in the Lagrangian.
Variation of i€6"0,&
Using the product rule:

dn (ig{fuauf) = 2‘(57,5)6“8;{ + i£5uau(5nf)

Given:

Onba = iV 20" 1%0udp + V2o F
and
&,EB = —i\/i?]aUZBSH(Z; + \/EﬁBF
Substituting these into the variation:
8, (€5 0,.€) = i(_i\/inaagﬁaué + \/57_7[35?)5%3#5 + ig&uau(i\/éagdﬁdaWﬁ + \/57704}7‘)

This expression is quite involved, and simplifying it requires careful manipulation of spinor indices and use
of spinor identities.
Variation of |9¢|*

09| = 9" $0,.6
Thus,

5n(|a¢|2) =" (5?7‘15)8#‘5 + 0" $0,(5,9)

Variation of |F|?

|F|* = FF
Thus,

8y (IFI*) = (6, F)F + F(8,F)

Given:

oo F = iN/27i6" 8,.€

6, F = —in/20,65"n
Substituting these:

48

5,(|1F[*) = (V206" 9.8) F + F(-iv/20,85"n)

Step 4: Combine the Variations
Now, combine all the variations to get 6, L:

8L = 8, (i€5"0,€) + 8, (1091 - 6, (|FI*)

This expression is quite lengthy, and to ensure the action is invariant, d,£ must be a total derivative. There-
fore, we need to manipulate the expression to identify any terms that are not total derivatives and set them
to zero by choosing appropriate transformation rules for ¢ and ¢.

Step 5: Determine §,¢ and d,

Given the complexity of the expressions involved, it’s clear that determining the exact form of §,¢ and 6,¢
requires careful calculation and use of spinor identities. However, based on the structure of supersymmetry
transformations in similar theories, we can infer that ¢ likely transforms linearly in terms of 1 and 7.
Assuming a general form:

on¢p=an-§+bn-§
where a and b are coefficients to be determined, and - represents appropriate contractions with spinors and
spinor indices.
By substituting this assumed form back into the expression for §, L and requiring that it be a total derivative,
we can solve for a and b.
Final Solution
After performing the detailed calculations and ensuring that the variation of the Lagrangian is a total deriva-
tive, we find that the transformation rules for ¢ and ¢ are:

Sn = V2076

571(13 = \/5577
These transformations ensure that the action remains invariant under the given supersymmetry transforma-

tions.
Final Answer:

‘ On = \/5775 and 5nq§ = \/5577

Verification Results:

Auto verification result ([2025-02-18T05:50:03.102857+00:00]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o0 (['2025-02-05T23:02:28.663568+00:00’]) Grade: C

Notes: The submitted solution shows a basic understanding of the problem and the need to ensure the
action is invariant under supersymmetry transformations. However, there are significant issues: the final
transformation rules for 6,¢ and &,¢ are incorrect compared to the standard solution. The standard solution
finds d,¢ = —/2n¢ and ((5n¢>)Jr = —/2¢€7, while the submitted solution incorrectly concludes One = V27€ and
Sy = V2€n. The approach to finding these transformations is not clearly aligned with the standard method,
and the solution lacks the necessary steps to derive the correct transformation rules.

49

2.2.6 Model: 03-mini
Attempt 1 (2025—02—04T18:24:27‘864341Z)

Detailed Solution: We start with the Lagrangian for a chiral multiplet
L=iEc" 0,6 +10¢ - |FI,

where £ is a two-component Weyl spinor and ¢ and F' are complex scalar fields.
The supersymmetry variations provided in the problem are

Spba = iN20", T28uh + V214 F,
Bty = —iv/2n® JZB@L(E + \/§ﬁBF‘,
o F =iV255"9,8, 6, F = -iv20,£5"n,
with 7 a spacetime-independent fermionic parameter.
In the standard WessZumino model the remaining transformation for the complex scalar ¢ is chosen so that

the variation of the action is a total derivative and all terms cancel appropriately. The well-known and
consistent choice is
Gnd = V21" Ea,

with the Hermitian conjugate

(5n¢)f = \/Eﬁd gd-
This is verified by checking that the variations of all terms in £ under the full set of SUSY transformations
(including the ones for £ and F) cancel (up to a total derivative).
Thus, the final answer is

Snd=V210"Ea, (690)" = V274 €.

Below is the corresponding Python code implementation.

from math import sqrt
from typing import Tuple

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuplel
float, float]:
nnn
Returns the SUSY transformation rules for phi and its Hermitian conjugate:
delta_phi = sqrt(2)*eta*xi, and delta_phi_dagger = sqrt(2)*bar_eta*bar_xi.

In a full SUSY theory, eta and xi are spinors so that the contraction
eta"\alpha xi_\alpha is Lorentz invariant. Here we assume eta, xi, bar_eta,
and bar_xi are numbers representing the appropriate contractions.

nnn

delta_phi = sqrt(2) * eta * xi

delta_phi_dagger = sqrt(2) * bar_eta * bar_xi

return delta_phi, delta_phi_dagger

Example usage:

if __name__ == "__main__":
These are example numbers.
eta = 1.0
xi = 2.0

bar_eta = 1.0

bar_xi = 2.0

dp, dp_dagger = find_delta_phi(eta, xi, bar_eta, bar_xi)
print ("delta_phi =", dp)

print ("delta_phi_dagger =", dp_dagger)

Final Answer:

Sy = V21" Ea, (650)" = V27 €.

Verification Results:

50

Auto verification result ([2025-02-18T05:50:03.103330+-00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o0 (['2025-02-05T23:02:38.033312+00:00’]) Grade: C

Notes: The submitted solution correctly identifies the Lagrangian and the supersymmetry variations, but it
provides the wrong final expressions for the transformations of ¢ and its Hermitian conjugate. The standard
solution gives 8,6 = —/2n¢ and (6,¢)" = —/2€7, while the submitted solution states d,¢ = v/2n*€s and
(6,7(15)Jr = /274€%. The approach shows understanding of the problem, but the final expressions are incorrect,
leading to a significant deviation from the standard solution.

Attempt 2 (2025-02-04T18:24:52.4043517Z)

Detailed Solution:
Step 1: Review the Standard SUSY Transformations

In the WessZumino model (the simplest supersymmetric theory with a chiral multiplet), the component fields
are a complex scalar ¢, a two-component Weyl fermion £, and a complex auxiliary field F'. The standard
supersymmetry (SUSY) transformations for these fields are given by

ndp = V20§,
Onba = iV20" 370 + V21 F,
6 F = iN/27746" ““0ba,
and similarly for the hermitian conjugate fields:
on = V271,
Oy = —i\/inaagﬂaué +V27;F,
o F = —in/20,E5" 7.

The expressions given in the problem for §,£x, 6, 4> On " and 8, F match the standard rules. Thus, to render
the Lagrangian ~
£=i€5" 9,6 + 106 - |F’

invariant under SUSY, the remaining transformation rules must be chosen consistently.

Step 2: Determine the Transformation for §,¢ and its Conjugate
In order for the SUSY algebra to close and for the variations of the kinetic terms (especially in the scalar
part \8<Z>|2 = 0,¢ 0") to cancel with those coming from the fermionic part, the transformation of the scalar
¢ must be chosen as:
Snp = V27¢.
Taking the Hermitian conjugate, we obtain:

(5n¢)T = \/5775

These are precisely the standard results in the chiral multiplet SUSY transformations.

Final Answer:

oy = \/577§a (%d’)f = \/5775

Step 3: Python Code Implementation
Below is the complete Python code that implements a function returning the SUSY transformation rules for ¢
and ¢. Note that in a realistic supersymmetric theory, n and & are Grassmann (anticommuting) variables. For
illustrative purposes, we will assume they are given as numbers so that the transformation rule is computed
as a simple product.

o1

from math import sqrt
from typing import Tuple

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuplel
float, float]:
Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger) where
delta_phi = sqrt(2) * eta * xi,
delta_phi_dagger = sqrt(2) * bar_eta * bar_xi.

Parameters:

eta (float): SUSY parameter (fermionic, represented here as a number)
xi (float): Weyl fermion field component

bar_eta (float): Hermitian conjugate of the SUSY parameter

bar_xi (float): Hermitian conjugate of the Weyl fermion field component

Returns:

Tuple[float, float]: A tuple containing the variations (delta_phi,
delta_phi_dagger)

nnn

delta_phi = sqrt(2) * eta * xi

delta_phi_dagger = sqrt(2) * bar_eta * bar_xi

return (delta_phi, delta_phi_dagger)

Example usage:

"

if __name__ == __main__":
Example values for testing purposes
eta = 1.0
xi = 2.0

bar_eta = 1.0
bar_xi = 2.0

delta_phi, delta_phi_dagger = find_delta_phi(eta, xi, bar_eta, bar_xi)
print("delta_phi =", delta_phi)
print ("delta_phi_dagger =", delta_phi_dagger)

Final Answer: 8,¢ =v2n¢&, (8,0)" =/27¢€.

Verification Results:

Auto verification result ([’2025-02-18T05:50:03.103810+00:00]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o0 (['2025-02-05T23:02:47.638570+00:00’]) Grade: C

Notes: The submitted solution correctly identifies the standard SUSY transformations for the fields in the
Wess-Zumino model. However, it incorrectly states the transformation for §,¢ and its conjugate as V2n¢
and /27 &, respectively, whereas the standard solution shows these should be —v/27n¢ and —/27£. The
submitted solution lacks the detailed derivation steps involving integration by parts and the use of the
identity %" + " c" = 2¢g"", which are crucial for arriving at the correct transformations. The Python code
implementation is irrelevant to the mathematical derivation and does not address the discrepancy in signs.

Attempt 3 (2025-02-04T18:25:15.2722207)

Detailed Solution: We start with the onshell Lagrangian for a chiral multiplet
L=i€5" 0,6+ 10" - |FI",

where £ is a 2component Weyl spinor, and ¢ and F' are complex scalar fields.

52

In a standard supersymmetric theory (the WessZumino model), the supersymmetry transformations for a
chiral multiplet are given by

677¢ = \/57757
nba = iV20" 70ud + 21u F,
60 F = iV/217]a " 0k,
with corresponding Hermitian conjugate rules for the conjugate fields:
6W¢T = \/57757
5,,5_3 = —i\/inaagﬁamf + \/577315,
5, F = -in/20,65"n.

In the problem statement the transformation rules for &,&, F, F are given. In order for the action to remain
invariant under these transformations, the variation of the kinetic term |8<]b|2 must cancel against other
variation terms. One verifies that choosing

Sad=V2nE, (6,0)" =0n0" = V27E,

leads to cancellation of the variations up to a total derivative. This is the standard result for a chiral
supermultiplet.
Thus, the transformation rules that ensure the invariance of the action are

Spp=V2n¢ and (5,9)' = V27E

Below is the corresponding Python code that implements the function to compute these transformation rules.
In this code we assume that the parameters n and £ (and their conjugates) are provided as numbers (or, in a
more sophisticated treatment, as symbolic or complex numbers). The function returns the values of 4,¢ and

(8,9)".

from math import sqrt
from typing import Tuple

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuplel
float, floatl]:
Returns the SUSY transformation rules for phi and its Hermitian conjugate:
delta_phi = sqrt(2) * eta * xi
delta_phi_dagger = sqrt(2) * bar_eta * bar_xi
delta_phi = sqrt(2) * eta * xi
delta_phi_dagger = sqrt(2) * bar_eta * bar_xi
return (delta_phi, delta_phi_dagger)

Example usage:

if __name__ == "__main__":
Example numerical values
eta = 1.0
xi = 2.0

bar_eta = 1.0

bar_xi = 2.0

dphi, dphi_dagger = find_delta_phi(eta, xi, bar_eta, bar_xi)
print ("delta_phi =", dphi)

print ("delta_phi_dagger =", dphi_dagger)

Final Answer: 8,4 =+/2n¢& and (5,,¢)1L =V27E.

Verification Results:

Auto verification result (['2025-02-18T05:50:03.104282+00:00']) Status: Incorrect

Evaluations:

53

Evaluated by gpt-4o0 (['2025-02-05T23:02:54.872994+00:00’]) Grade: C

Notes: The submitted solution correctly identifies the transformation rules for the chiral multiplet, but it
presents them with the opposite sign compared to the standard solution. The standard solution concludes with
8y = —/2n€ and (8,¢)" = —/2€7, while the submitted solution states 8,¢ = v/2né and (6,¢)" = /277€. The
sign difference is crucial in the context of supersymmetry transformations. The approach shows understanding
of the transformation rules but fails to match the standard solution’s final result due to this sign error.

Attempt 4 (2025-02-04T18:25:34.8123377)

Detailed Solution: We start with the Lagrangian
£ =i0" 0,6 +109|" - |FI’

where ¢ is a 2-component Weyl spinor and both ¢ and F' are complex scalar fields. Suppose we wish to
introduce supersymmetry transformations. The transformations provided are

Snéa = iV204,7°0ud + V2na F,
57755 = —i\/§n°‘0238m7+ \/5’7}6}_7,
6o F = iN205" 8,6, 6,F = —in/29,.E65M.

We must now determine the transformation rules for the scalar field ¢ (and its Hermitian conjugate) so that
the action associated with £ remains invariant. In a supersymmetric theory, the chiral multiplet is usually
taken to have the following set of transformations:

S =V2nE, (0,0)" = V27E.

These are consistent with the variations of the other fields and guarantee that the variations in the scalar
kinetic term
061" = 04606
will cancel against the variations coming from those of the fermionic field £ and the auxiliary field F.
Thus, our final transformation rules for the scalar field are

S =V2nE, (8,9)" = V27E.

Below is the corresponding Python code that implements the function returning these transformation rules:

from math import sqrt
from typing import Tuple

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuplel
float, float]:
nnn
Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)

Here, the transformation rules are:
delta_phi = sqrt(2) * eta * xi
delta_phi_dagger = sqrt(2) * bar_eta * bar_xi
delta_phi = sqrt(2) * eta * xi
delta_phi_dagger = sqrt(2) * bar_eta * bar_xi
return (delta_phi, delta_phi_dagger)

Example usage:

if __name__ == "__main__":
example values for the parameters; these are purely illustrative
eta = 1.0
xi = 2.0

bar_eta = 1.0
bar_xi = 2.0

54

result = find_delta_phi(eta, xi, bar_eta, bar_xi)
print ("delta_phi =", result[0])
print ("delta_phi_dagger =", result[1])

Final Answer: 0,6 =+/2n¢ and (5,6)" = V27 £.
Verification Results:

Auto verification result ([2025-02-18T05:50:03.104759+-00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o0 (['2025-02-05T23:03:06.340390+00:00’]) Grade: C

Notes: The submitted solution shows a basic understanding of the problem but contains significant issues. The
transformation rules for the scalar field ¢ and its Hermitian conjugate are incorrect. The standard solution
finds 6,¢ = —/2n¢ and (6,]gzﬁ)Jr = —\/2€7, while the submitted solution incorrectly states o = V2n¢ and
(6,7¢>)Jr =v/27€. The approach to finding the transformation rules is not aligned with the standard solution’s
method, which involves ensuring the action remains invariant and solving for the transformation that cancels
the remainder. The submitted solution lacks this crucial step and directly assumes transformation rules
without deriving them from the invariance condition.

Attempt 5 (2025-02-04T18:25:55.7479687)

Detailed Solution:
Step 1: Understanding the Problem

We are given a free Lagrangian for a chiral multiplet:
L =i€" 0,6 + 109" ~ |F I,

where £ is a two-component Weyl spinor and ¢ and F' are complex scalars. The infinitesimal SUSY transfor-
mation for the fermion £ is given by

Ona = iV 20" 70+ /21 F.

We are also given the transformation rules for €, F, and F' (obtained by taking Hermitian conjugates) and we
must now find the transformation rules d,¢ and its Hermitian conjugate (57,q5)T such that the action remains
invariant.

Step 2: Devising a Plan

In a standard N =1 chiral (or scalar) supermultiplet, the fields ¢, £, and F' transform under supersymmetry
as (see e.g. the WessZumino model):

677¢ = \/577 57
Onéa = iV20 7% 0ud + V20 F,
6y F = iv/2746" Y 0,8
The Hermitian conjugate transformation for the complex conjugate field ¢ is then naturally obtained as
571@?7 = \/5775 °

Thus, to keep the Lagrangian invariant (up to a total derivative), the variation of the scalar field must be
chosen as

67l¢ = \/57757

and its Hermitian conjugate is

(‘%d’)f = \/5775

Step 3: Carrying Out the Plan

55

It is clear from the structure of the SUSY algebra and the requirement of invariance of the action that
the transformation rules must be those of the chiral multiplet. Substituting these into the variation of the
Lagrangian one checks that all terms cancel (modulo total derivatives).

Thus, the transformation rules that leave the action invariant are:

Snd=V2nE,
(5n¢)T = \/ﬁﬁg

This is our final symbolic mathematical expression.

Step 4: Python Code Implementation

Below is the Python code implementing a function that returns the SUSY transformation rules for ¢ and its
Hermitian conjugate. Here, we interpret the fields and transformation parameters as symbolic placeholders
represented by float numbers (this serves as a simple demonstration).

from math import sqrt
from typing import Tuple

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuplel
float, float]:

nwnn

Returns the SUSY transformation rules for phi and its Hermitian conjugate.

According to the SUSY transformation of a chiral multiplet:
delta_phi = sqrt(2) * eta * xi,
delta_phi_dagger = sqrt(2) * bar_eta * bar_xi.

Parameters:

- eta: The infinitesimal fermionic parameter (component) for the transformation.
- xi: The Weyl spinor field value (component) corresponding to xi.

- bar_eta: The complex conjugate of the transformation parameter eta.

- bar_xi: The complex conjugate of the Weyl spinor xi.

Returns:

A tuple (delta_phi, delta_phi_dagger) containing the SUSY transformation results.
delta_phi = sqrt(2) * eta * xi

delta_phi_dagger = sqrt(2) * bar_eta * bar_xi

return (delta_phi, delta_phi_dagger)

Example usage (with arbitrary values):
n

if __name__ == "__main__":
These are arbitrary example values for testing
eta = 1.0
xi = 2.0
bar_eta = 1.0
bar_xi = 2.0
print ("delta_phi, delta_phi_dagger =", find_delta_phi(eta, xi, bar_eta, bar_xi))

Final Answer: 6,0=v2n¢ and (6,0)' =V27¢.

Verification Results:

Auto verification result ([2025-02-18T05:50:03.105232+-00:00]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o0 (['2025-02-05T23:03:16.856353+00:00’]) Grade: C

Notes: The submitted solution shows a basic understanding of the problem and correctly identifies the
transformation rules for the chiral multiplet. However, it contains significant issues: the final transformation
rules for ,¢ and its Hermitian conjugate are incorrect compared to the standard solution. The submitted

56

solution states d,¢ = v/2n& and (5,7<;5)Jr = V27 €, whereas the standard solution gives 6,¢ = —/27¢& and
((5,7gi>)lr = —\/2£7. The sign difference is crucial in the context of supersymmetry transformations. Additionally,
the submitted solution lacks detailed steps showing how the transformation rules were derived from the
variation of the Lagrangian, which is present in the standard solution.

57

2.2.7 Model: ol
Attempt 1 (2025—02—04T21:37:08.483829Z)

Detailed Solution:
Step-by-Step Solution:

1. Understand the Problem

We are given a 4D N = 1 supersymmetric-like Lagrangian
 Ee 2 2
L=ifc"0,¢+ |0.0] - |F,

where £ is a 2-component Weyl spinor and ¢, F' are complex scalars (the latter often called the auxiliary
field). An infinitesimal transformation parameterized by a constant fermionic spinor 7 is given for &, &, F,

and F. We seek the accompanying transformations d,¢ and (énqb)T that leave the action invariant.

2. Devise a Plan

In 4D N =1 supersymmetry, the fields (¢, &, F') typically form a chiral (or scalar) supermultiplet. The known
SUSY transformation rules for such a multiplet are, up to conventions,

Sy = V21" &a,
Snéa = £iV20, 7% O + V2na F,
o F = iV275" .,
with the sign in front of the derivative term depending on conventions. Likewise,
30$ = (529)" = V271% &,
and similarly for F. These transformations ensure the invariance of the action.

3. Carry Out the Plan

Inspection of the problem statement shows that the variations of &, &, F, F' match the usual SUSY forms after
accounting for sign conventions. Hence, the required transformations of ¢ and its Hermitian conjugate ¢ must
take the standard chiral multiplet form (no derivatives on the scalar). Therefore:

Su = V20" ar (609)" = 606 = V27%&s.

These are precisely the transformations needed to preserve the given Lagrangian L.
Final Answer: 6,6 = V21" &, ((57,<z>)4r = V27%é&s.

Python Code Implementation

Below is a simple Python function that, in a very schematic way, returns these transformation rules when
treating 7, &, 7, and € as (real or complex) numbers rather than full spinors. Naturally, in a full field-
theoretic context one would keep track of fermionic index structure carefully, but this code illustrates the
final expressions in a simplified manner:

from math import sqrt
from typing import Tuple

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuplel
float, float]:

nnn

Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger).

58

Here eta, xi, bar_eta, bar_xi are treated as simple floats (or complex in
practical usage),
standing in for the full spinorial expressions. The formulas implement:
delta_phi = sqrt(2)*eta*xi
delta_phi_dagger = sqrt(2)*bar_eta*bar_xi

nwnn

delta_phi = sqrt(2)*eta*xxi
delta_phi_dagger = sqrt(2)+*bar_eta*bar_xi
return (delta_phi, delta_phi_dagger)

In an actual supersymmetric field theory code (e.g., in a symbolic or numerical package), one would store
the spinor components as arrays or more sophisticated objects. However, the structure of the above function
captures the key aspect: the factor of v/2 and the multiplicative nature of the SUSY transformation for ¢
and ¢.

Verification Results:

Auto verification result ([2025-02-18T05:50:03.105623+-00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o0 ([’2025-02-05T23:03:25.878649+00:00’]) Grade: A

Notes: The submitted solution correctly identifies the supersymmetry transformation rules for the chiral
supermultiplet, matching the standard solution’s final answer. The solution process is clear and logically
structured, demonstrating a correct understanding of the problem. The final expressions for ,¢ = V2 n% &€a
and (6»,7(25)T = /27% €4 are equivalent to the standard solution’s results, differing only in sign convention, which
is acceptable. The inclusion of a Python code snippet, while not necessary for the mathematical solution,
does not detract from the correctness of the solution.

Attempt 2 (2025-02-04T21:37:44.7639267Z)

Detailed Solution:
Step-by-Step Solution

1. Understand the Problem
We have a theory described by the Lagrangian

L =ifa"0,¢ + |og|" - |FI,

where {q is a 2-component Weyl spinor, ¢ is a complex scalar ﬁeldland F' is a complex auxiliary field. We
are given supersymmetry transformations for the fields ¢, £, F', and F', and we wish to find the corresponding
transformation laws for ¢ and ¢ (or equivalently (8,¢)") such that the action remains invariant.

2. Devise a Plan
From standard 4D A = 1 supersymmetry (for a free chiral multiplet), the transformations for the fields
typically take the schematic form
bcdp = V2ey, b.1p = V2eF + i20"€0,h, 6. F = i/2ec" 0,1,

where 1) is a Weyl spinor and € is an infinitesimal SUSY parameter. In the notation of the problem, ¢ < ¢
and € < 7. By comparing the given transformations to the standard form, we deduce that

b = V20" e, (8nd) = 870 = V2TLES.

3. Carry Out the Plan

1. Note that 6, & and 4, F' given in the problem match exactly the standard chiral multiplet SUSY trans-
formations up to conventions and signs. 2. Therefore, the invariance of the action under supersymmetry
requires the scalar field ¢ to transform as

ond = \/577& €a-

59

3. Hermitian conjugation then implies
(6,9)" = 8,(8") = V27 €.
Hence, the required transformation laws are

0n¢ = V2(n€), (Gn9)' = V2(7).

Final Answer: §,¢ = V2n€, ((57,¢)Jr = V27

Python Code

Below is a Python function that returns these transformation rules in a simplified float-based form (treating
the spinors as single real variables eta etc.). While this is not a full spinor treatment, it demonstrates how
one might encode the symbolic result:

from math import sqrt
from typing import Tuple

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuplel
float, float]:

nwnn

Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger).

In a simplified numerical form, we treat all spinor components

as single real variables.
mnn

delta_phi = sqrt(2) * eta * xi
delta_phi_dagger = sqrt(2) * bar_eta * bar_xi
return (delta_phi, delta_phi_dagger)

This completes the derivation and the requested code.
Verification Results:

Auto verification result ([2025-02-18T05:50:03.106011+-00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o0 (['2025-02-05T23:03:32.518018+00:00’]) Grade: A

Notes: The submitted solution correctly identifies the transformation laws for the scalar field ¢ and its Hermi-
tian conjugate ¢ under supersymmetry. The solution process is well-structured, starting from understanding
the problem, devising a plan based on standard supersymmetry transformations, and carrying out the plan to
derive the transformation laws. The final answer §,¢ = V21 € and (6,7<;5)T = /27 € matches the standard solu-
tion, demonstrating correct reasoning and understanding. The inclusion of Python code, while not necessary
for the mathematical solution, does not detract from the correctness of the solution.

Attempt 3 (2025-02-04T21:38:13.8353837)

Detailed Solution:
Step-by-Step Solution:

1. Understand the Problem
We have a Lagrangian

L =ia"a.¢ + |og] - |F[,
where £ is a 2-component Weyl spinor, and ¢ and F' are complex scalar fields. We want the theory to be
invariant under the following infinitesimal supersymmetry-like transformation for £, &, F, F' (parametrized by

60

the constant fermionic spinor 7):
Ona = iV20047" Outd + V21a F,
o€y = 72‘\/517‘*0’;58“(;3 + V27, F,

6, F = iN276" 0, €, 6,F = —iN20,E5" .

We must find the variation d,¢ and its Hermitian conjugate (8,¢)" = 8,¢ so that the action [d*z L remains
invariant.

2. Devise a Plan
From the structure of the 4D A = 1 chiral multiplet, one typically has the transformations
67]¢ = \/57757 6775) = \/5775

These ensure that the variations of the kinetic terms for ¢ and £ neatly combine into total derivatives or cancel
pairwise, leaving the action invariant. To verify, one checks how each piece of the Lagrangian varies under
these transformations and shows that all variations can be arranged to vanish or become total derivatives.

3. Carry Out the Plan

Hence, by matching terms and ensuring invariance, we find:

Sad = V2n€, (6q9)" = V27E.

Sn¢ = V2nE , (6,0)" = V27€

Final Answer:

Snd=V2nE, (0y0)' =6,6=V27E

Python Implementation

Below is a simple Python function that returns the (symbolic) SUSY transformation rules for ¢ and ¢ (Her-
mitian conjugate) as a tuple (8,¢, d,6). For simplicity, the spinoral structures n,£,7, € are represented here
as real floating-point variables; in a realistic setting, these would be spinors rather than scalars. Nevertheless,
the multiplication by /2 reflects the same SUSY transformation structure:

from math import sqrt
def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> tuplel
float, float]:
Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger).
Here, eta, xi, bar_eta, bar_xi are treated as real numbers, but in a
full SUSY context they would be (two-component) spinors.
nmnn
delta_phi = sqrt(2) * eta * xi
delta_phi_dagger = sqrt(2) * bar_eta * bar_xi
return (delta_phi, delta_phi_dagger)

This completes the solution.
Verification Results:

Auto verification result ([’2025-02-18T05:50:03.106389+00:00’]) Status: Incorrect

Evaluations:

61

Evaluated by gpt-4o0 (['2025-02-05T23:03:42.996067+00:00’]) Grade: C

Notes: The submitted solution shows a basic understanding of the problem and the transformations involved.
However, it contains significant issues. The final expressions for the variations ,¢ and ((5,,(1))Jr are incorrect
compared to the standard solution. The standard solution finds 6,6 = —v/2n¢ and (8,6)" = —/2€7, while the
submitted solution provides &,¢ = v/2n¢ and (8,4)" = /27€. The sign difference is crucial in the context of
supersymmetry transformations. Additionally, the solution lacks detailed steps to derive these transformations
and verify the invariance of the action, which are present in the standard solution.

Attempt 4 (2025-02-04T21:38:52.6683367)

Detailed Solution:
Step-by-Step Solution:

1. Identify the Multiplet and Compare with Standard SUSY Transformations

We note that the given field content (¢,&, F') matches the usual structure of a chiral multiplet in four-
dimensional N = 1 supersymmetry. In standard conventions (e.g., Wess-Bagger), the SUSY transformations
for a chiral multiplet (¢, ¢, F') are often written as:

8¢ =V2ny,
5pa = V200 F +iV20h, 7% 0.8,
OF = iN/27%5",, 8,°.

Here 7 is a (constant) Weyl spinor parameter of the supersymmetry transformation.
In the problem, &, plays the role of the chiral fermion (often denoted 1), in many textbooks), and F plays
the role of the auxiliary field. Indeed, from the problem:

Onfa =iN20" 7% 0, + V214 F,

which matches the standard form if we identify £, < ¥q.

2. Determine the Transformation for ¢
By analogy with the standard chiral multiplet SUSY transformation, one infers
S = V21" a.
Often one drops explicit spinor indices and simply writes:

dnd = \/5775

3. Hermitian Conjugate for ¢

Since ¢ is the Hermitian conjugate of ¢, we take the Hermitian conjugate of §,¢ to obtain
(‘Snﬁb)T = 57@ = \/5775

Thus, the transformations for the scalar fields in the chiral multiplet that keep the action invariant are:

Sad = V2nE, (6,0)" = 8,0 = V27E.

Final Answer: 0,0=v2n¢, (6,6)' =6,6=V27¢E.

Required Python Code Conversion

Below is a minimal Python function that returns d,¢ and 6,¢ by treating all inputs as simple floating-point
numbers. In a genuine supersymmetric field-theory computation, n, &, etc., are spinors, and their product
in index notation is more subtle. However, to meet the problems code-format request, we can represent the
transformation rule symbolically with float multiplications:

62

from math import sqrt
from typing import Tuple

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuplel
float, float]:

nwnn

Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger).

In an actual SUSY setting, eta, xi, bar_eta, and bar_xi would be spinors,
and the products below would involve spinor index contractions. Here,
for demonstration, they are represented as floats.

nnn

delta_phi = sqrt(2)*eta*xi
delta_phi_dagger = sqrt(2)+*bar_eta*bar_xi
return (delta_phi, delta_phi_dagger)

Final Answer: ~
Sud=V2n¢, (8,8)" = V27E.

Verification Results:

Auto verification result ([2025-02-18T05:50:03.106774+-00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o0 (['2025-02-05T23:03:50.076532+00:00’]) Grade: C

Notes: The submitted solution correctly identifies the field content as a chiral multiplet and uses standard
SUSY transformation rules. However, it incorrectly states the transformation for 8, as /27 € instead of the
correct —/2 n& as given in the standard solution. Similarly, the Hermitian conjugate transformation is also
incorrect. The approach shows understanding of the SUSY transformations but fails to match the signs in
the final expressions with the standard solution.

Attempt 5 (2025-02-04T21:39:40.9075417)

Detailed Solution:
Solution Steps:

1. Understand the Problem

We have a Lagrangian

L£=i£5"9,€ + 04" - |F|?

where € is a 2-component Weyl spinor, and ¢, F' are complex scalar fields. We are given the SUSY trans-
formation rules for &,,&4,F, and F parameterized by an infinitesimal fermionic constant spinor 7. Our
task is to determine d,¢ (and its Hermitian conjugate) such that the action remains invariant under these
transformations.

2. Devise a Plan

In 4D N =1 supersymmetry (in two-component notation), the chiral multiplet (¢, £, F') typically transforms
as follows:

Ond ~n&, 0pé ~nF+0"70.p, O, F ~ 7" 0,8

By comparing these standard forms to the given variations for £, and F', we identify that
Oy = \/577‘l §a and (6n¢)T = 5nq3 = \/57704 gd

will make the theory invariant under the proposed supersymmetry transformations.

63

3. Carry Out the Plan

Hence, from matching the usual SUSY chiral multiplet form and ensuring invariance of the Lagrangian, the
necessary transformation rules for ¢ and its Hermitian conjugate ¢ are

Snd =20 &, (840)" = V27 €%

5n¢:\/§77afa y 571(2):\/577&5@

Final Answer: 0,¢= V2n* €a, ((§n¢)Jr =214 £,

Python Code Implementation

Below is a simple illustrative Python function that returns these transformation rules as floats under the
(very simplified) assumption that n,&,7,€& can be treated numerically in place of full spinor indices:

from math import sqrt
from typing import Tuple

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuplel
float, float]:

nnn

Returns the SUSY transformation rules for phi and its Hermitian
conjugate: a tuple (delta_phi, delta_phi_dagger).

Here, eta, xi, bar_eta, and bar_xi are treated as (overly) simplified
numeric parameters in place of actual spinor components.

nwnn

delta_phi = sqrt(2) * eta * xi
delta_phi_dagger = sqrt(2) * bar_eta * bar_xi
return (delta_phi, delta_phi_dagger)

Verification Results:

Auto verification result ([’2025-02-18T05:50:03.107158+00:00]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o0 (['2025-02-05T23:03:58.377096+00:00’]) Grade: A

Notes: The submitted solution correctly identifies the supersymmetry transformation rules for the chiral
multiplet, matching the standard solution’s final results. The approach is valid, showing an understanding of
the problem and the necessary steps to derive the transformations. The final expressions §,¢ = V21> €, and
((5,]qzﬁ)Jr =2 N £% are equivalent to the standard solution’s results, albeit with a sign difference that does not
affect the physical interpretation. The inclusion of a Python code snippet is an additional illustrative tool
but does not impact the correctness of the mathematical solution.

64

2.2.8 Model: chatgpt-4o-latest
Attempt 1 (2025-02-04T23:00:04.3403437Z)

Detailed Solution: Step 1: Understanding the Problem
We are given the Lagrangian:

L =" 0,6 + 104> - |F|?
and the transformation rules for the fields &, &, F, and F. Our goal is to determine the transformation rule
for ¢ and its conjugate ¢ such that the action remains invariant.
Step 2: Identifying the Required Transformation

The action is given by:
5= [dac

For the action to be invariant under the transformation, the variation of the Lagrangian must be a total
derivative:

8, L =0,J"
for some current J*.
Step 3: Variation of the Lagrangian
We compute the variation of each term in L:
1. Kinetic Term for &:

dn (igf?uauf) = 2‘(5775)6”8#5 + if&”aﬂ(&,ﬁ)

Substituting the given transformations:
On€ = iV 20" 70, + V20 F

6n€ = —i/2n0" 8, + V20 F
Expanding:

i(=iV/2n0" 8,p + /27 F)5" 0,€ +i€5" 0,,(iv/ 20" 10, ¢ + /20 F)
Simplifying, we see that terms involving F and F cancel with the variation of the |F|* term.
2. Kinetic Term for ¢: B ~
51 (106[) = 0u(619)0" ¢ + 0, 0" (8,)

To cancel the remaining terms, we require:

one = i\/§7757 577‘;S = _Z\/gﬁé
Step 4: Final Answer

S = iv/2n€
571?5 = —iﬁﬁé

Final Answer:

from math import sqrt
from typing import Tuple

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuple [
float, float]:
Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)
delta_phi = 1j * sqrt(2) * eta * xi
delta_phi_dagger = -1j * sqrt(2) * bar_eta * bar_xi
return delta_phi, delta_phi_dagger

Verification Results:

65

Auto verification result ([2025-02-18T05:50:03.107537+-00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o0 (['2025-02-05T23:04:09.930460+00:00’]) Grade: C

Notes: The submitted solution shows a basic understanding of the problem and correctly identifies the
need for the variation of the Lagrangian to be a total derivative. However, there are significant issues: the
final transformation rules for &,¢ and &,¢ are incorrect. The submitted solution gives &,¢ = iv/2n¢ and
Sy = —iV/27j€, whereas the standard solution provides One = —/2n¢ and S = —/2€7. The incorrect factor
of 7 in the submitted solution indicates a misunderstanding of the transformation rules. Additionally, the
Python code provided does not align with the standard solution’s final answer, further indicating a significant
error in the approach.

Attempt 2 (2025-02-04T23:00:14.296335Z)

Detailed Solution: To find the transformation rule for §,¢ and its conjugate 6, ¢, we require that the action
associated with the Lagrangian £ remains invariant under the given transformations.
Step 1: Identify the Variation of the Lagrangian The Lagrangian is given by:

L = i€5"8,€ + |09 - |F|?

We compute the variation of each term under the given transformations.
Variation of the Kinetic Term of £

8, (i€6"0u€)
Expanding: _
6’q£o¢ = 'L‘\/E(Tga'f_]aau(ﬁ + \/§7ID¢F

8,5 = m/inaagﬁ.a#a) +V20;F
Variation of the Auxiliary Field Term
8,(~|F*) = ~(F8,F + F§,F)

Using:
6o F = iN/21j6" 8,.&
6, F = —in/20,65"n
Step 2: Determine d,¢ Since the Lagrangian must remain invariant, we assume a transformation of the form:

6n = An€ + B

where A and B are constants to be determined.
By requiring invariance of the kinetic term |9¢|*, we find:

Sn = iV/2n¢

6n = -iV/27€
Final Answer:

Sn = iV/2n¢

677& = _i\/iﬁé

Step 3: Implement in Python

from math import sqrt
from typing import Tuple

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuplel
float, float]:

nwnn

66

Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)

nwnn

delta_phi = 1j * sqrt(2) * eta * xi
delta_phi_dagger = -1j * sqrt(2) * bar_eta * bar_xi
return delta_phi, delta_phi_dagger

This function computes the SUSY transformation rules for ¢ and ¢ given the fermionic parameters 7,7 and
the spinor fields &, €.
Verification Results:

Auto verification result ([’2025-02-18T05:50:03.107914+00:00]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o0 (['2025-02-05T23:04:21.277914+00:00’]) Grade: C

Notes: The submitted solution shows a basic understanding of the problem but contains significant issues.
The final transformation rules for &,¢ and &, ¢ are incorrect compared to the standard solution. The standard
solution finds §,¢ = —v/2n¢ and (5n¢>)T = —/2£7, while the submitted solution incorrectly states &,¢ = in/2né
and 6,¢ = —i\/ﬁﬁg . The approach to finding the transformation rules is not aligned with the standard solution,
and the incorrect sign in the transformation rules indicates a misunderstanding of the integration by parts and
the handling of the o matrices. Additionally, the Python implementation is irrelevant to the mathematical
solution and does not contribute to the correctness of the transformation rules.

Attempt 3 (2025-02-04T23:00:25.6434967)

Detailed Solution: To find the transformation rule for ¢ and ¢, we need to ensure that the Lagrangian £
remains invariant under the given transformations.

Step 1: Compute 6, L

The Lagrangian is given by:

L =if" 0,6 +|0¢]" - |F|°
We compute the variation of each term.
Variation of the Kinetic Term for &:

6y (1€6"0,8) = i(8,€)T" 0, € + €% 0, (0,€)

Substituting the given transformations:
Onba = iV20" 70 + V21o F

8ns = 4@77“0566#& +V20;F

Thus, the variation of the kinetic term will contain terms involving d,¢ and 8, ¢.
Variation of the Scalar Kinetic Term:

51 (106[) = 0" (8,9)yu$ + 0" $9,.(8,)
Variation of the Auxiliary Field Term:

6,(|F|?) = F6,F + F6,F
Using:

6o F = iV/276" 0,6

oy F = —i\/§3u§_5”77
Step 2: Determine d,¢

67

To cancel the variations and maintain invariance, we propose:

8 = iv/2n8

8y = —iv/20E
Final Answer:

S = iv/2nE

O = —iV/20E

Step 3: Implement in Python

from math import sqrt
from typing import Tuple

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuplel
float, float]:

nwnn

Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)

nwnn

delta_phi = 1j * sqrt(2) * eta * xi
delta_phi_dagger = -1j * sqrt(2) * bar_eta * bar_xi
return delta_phi, delta_phi_dagger

This function computes the SUSY transformation rules for ¢ and ¢ given the fermionic parameters 7, 7 and
the spinor fields &, &.
Verification Results:

Auto verification result ([2025-02-18T05:50:03.108295+-00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o0 (['2025-02-05T23:04:34.583612+00:00’]) Grade: C

Notes: The submitted solution shows a basic understanding of the problem but contains significant issues.
The final transformation rules for §,¢ and 8, ¢ are incorrect. The standard solution finds &,¢ = —/2n¢ and
((5n¢)Jr = —\/2¢7, while the submitted solution proposes On = i/2n¢ and Spb = —i7/27€. The imaginary unit
¢ is incorrectly included in the transformation rules. Additionally, the solution lacks a clear demonstration of
how the variations cancel to maintain the invariance of the Lagrangian, which is a crucial step in the reasoning
process.

Attempt 4 (2025-02-04T23:00:35.1477187Z)

Detailed Solution: To find the transformation rule for §,¢ and 6,6, we impose the condition that the action
remains invariant under the given transformations.
Step 1: Identify the Variation of the Lagrangian The Lagrangian is given by:

L =i€5" 9. +|0¢|* - |F|”

We compute the variation of each term under the given transformations.
Variation of the Kinetic Term for & ~
I (i€6"0,8)

Using the given transformation rules:

Onba = iV 20" 1% 0udp + NV 21u F

68

6,85 = —iV/2" 0 0,5+ /3, F
Substituting these into the kinetic term and simplifying, we find that the variation will contain terms involving

8.

Variation of the Scalar Kinetic Term
81 (106[*) = 0,,(0" 6, + 0" 5,)

For the action to remain invariant, the total variation should be a total derivative. This suggests that d,¢
should be related to .
Step 2: Propose a Transformation for ¢ By symmetry considerations and dimensional analysis, we propose:

n = iV/2n€
(57,65 = _i\/iﬁé

These transformations ensure that the variation of the action is a total derivative, preserving invariance.

Final Answer:

S = iV/2n€
nd = —iV/20€
Step 3: Convert to Python Code The following Python function implements the transformation rules:

from math import sqrt
from typing import Tuple

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuplel
float, float]:

nwnn

Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)

nwnn

delta_phi = 1j * sqrt(2) * eta * xi
delta_phi_dagger = -1j * sqrt(2) * bar_eta * bar_xi
return delta_phi, delta_phi_dagger

This function takes in the parameters 7, £, 7, & and returns the transformed values of ¢ and ¢.
Verification Results:

Auto verification result ([2025-02-18T05:50:03.108738+-00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o0 (['2025-02-05T23:04:43.545087+00:00’]) Grade: C

Notes: The submitted solution shows a basic understanding of the problem but contains significant issues.
The proposed transformations for §,¢ and d,¢ are incorrect. The standard solution finds 6,¢ = —/2n¢ and
(5,7q5)T = —/2€7, while the submitted solution proposes d,¢ = iv/2n¢ and §,¢ = —iv/27€. The incorrect use of
i’ in the transformations leads to a different physical result. Additionally, the solution lacks detailed steps
to derive these transformations and does not adequately address the integration by parts or the use of the o
matrix identity as in the standard solution.

Attempt 5 (2025-02-04T23:00:45.4043367)

Detailed Solution: To find the transformation rule for ¢ and @, we require that the Lagrangian £ remains
invariant under the given transformations.

Step 1: Compute 6, L

The Lagrangian is given by:

L =1i€6"8,€ +109|° - |FI?

69

We compute the variation of each term.
Variation of the kinetic term for &:

oy (i£_5”6uf) = i(5n€)6“(9u§ + if_5uau(5n£)

Substituting the given transformations:
Onka = V20" 70 + V20 F

8,5 = —i\/in“agﬁaué +V20;F
Thus,

8, (i€6"9u€) = i(-iv/2n%a" 40P + V215 F)5" 0,¢

+i€5" 0, (iV20%7% 0, ¢ + V2o F)

Expanding and simplifying, we find that the variation cancels provided:
8y = iV20"Ea

577?5 = i\/iﬁdéd

Final Answer:
8o = iV20"€a

Sn = V276 €

Step 2: Implement in Python

from typing import Tuple
from math import sqrt

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuple[
float, float]:

nwnn

Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)

nnn

delta_phi = 1j * sqrt(2) * eta * xi
delta_phi_dagger = 1j * sqrt(2) * bar_eta * bar_xi
return delta_phi, delta_phi_dagger

This function takes in the parameters 7, &, 7, and € and returns the transformation rules for ¢ and .
Verification Results:

Auto verification result ([2025-02-18T05:50:03.109127+400:00]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o0 (['2025-02-05T23:04:55.577270+00:00’]) Grade: C

Notes: The submitted solution shows a basic understanding of the problem but contains significant issues.
The transformation rules derived for 8,4 and d,¢ are incorrect. The standard solution finds &,¢ = —/2n¢
and (0,¢)" = —\/2£7, while the submitted solution incorrectly states d,¢ = iv/2n*€q and 8, = iv/27ja€Y. The
approach to compute 6, L is partially correct, but the final transformation rules do not match the standard
solution. Additionally, the Python implementation is irrelevant to the mathematical derivation and does not

contribute to solving the problem correctly.

70

2.2.9 Model: deepseek-ai/DeepSeek-V3
Attempt 1 (2025-02-06T21:54:04.964470+00:00)

Detailed Solution: To solve this problem, we need to determine the transformation rules é,¢ and (5n¢)T
such that the action associated with the Lagrangian £ remains invariant under the given infinitesimal trans-
formations.

Step 1: Understand the Problem We are given the Lagrangian:

L =i€5" 9,6 + |09 - |FI?

and the transformation rules for £, £, F', and F. We need to find §,¢ and (6,7q5)T such that the action remains
invariant.

Step 2: Devise a Plan To ensure the action remains invariant, the variation of the Lagrangian under the given
transformations should be zero. We will use the given transformation rules and the Lagrangian to derive the
required transformation rules for ¢ and .

Step 3: Carry Out the Plan We start by considering the variation of the Lagrangian under the given trans-
formations:

8oL = 6y (i€6"0,) + 65 (10¢°) = 8, (|1FI*)
Let’s compute each term separately.
Variation of i£6"0,.&:

By (16070,€) = 1 (6,8) 5" By + €50, (5,8)

Using the given transformation rules:
Onba = iN20" %0 + 20 F
Sns = —i\/in“agéaué +V20,F
Substituting these into the variation:
5, (i€6"0,8) =i (—i\/in“ag Oud+ \/51751?) 5"9,€ +i€5" 0, (iﬁagdﬁdam + \/§naF)
Variation of |0¢|*:))
S (104]%) = 9y (8,0) 0" ¢ + 80" (5,9)

Variation of |F|*: _ _
6, (IFF) = (8,F) F+ F (6,F)

Given:

6o F = iN/21j6" 0,.¢
6, F = —in/20,65"n
Substituting these into the variation:

oy (IFI?) = (iV275"0,€) F + F (~iv/20,€5"n)

Step 4: Determine 6,¢ and (5n¢>)T To ensure the action remains invariant, the total variation ,L must be
zero. This requires that the terms involving d,¢ and (67,¢>)Jr cancel out the other variations.

After a detailed calculation (which involves integrating by parts and using the properties of the spinor fields),
we find that the transformation rules for ¢ and ¢! must be:

Ong = \/577(1504
(5n¢)f = \/Eﬁécém

Final Answer: The transformation rules for ¢ and ¢ are:
8o = V211 a

(5n0)" = V276"
Python Code Implementation:

71

from typing import Tuple

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuplel
float, float]:

nwnn

Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)

nwnn

delta_phi = sqrt(2) * eta * xi
delta_phi_dagger = sqrt(2) * bar_eta * bar_xi
return (delta_phi, delta_phi_dagger)

Verification Results:

Auto verification result ([’2025-02-18T05:50:03.109524+-00:00]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o0 (['2025-02-07T22:45:12.976223+00:00’]) Grade: C

Notes: The submitted solution shows a basic understanding of the problem and attempts to derive the
transformation rules for §,¢ and (5,7¢)T. However, there are significant issues: the final transformation
rules derived in the submitted solution, &,¢ = v/2n*¢, and (($,7ng)Jr = V/274€%, are incorrect compared to the
standard solution, which gives d,¢ = —\/5175 and ((5n¢>)T = —\/5577. The submitted solution also lacks detailed
steps showing how the integration by parts and simplifications were performed to reach the final answer. The
approach has some merit, but the final results are not equivalent to the standard solution.

Attempt 2 (2025-02-06T21:55:12.274913+00:00)

Detailed Solution: To solve this problem, we need to determine the transformation rules é,¢ and 5n¢T such
that the action associated with the Lagrangian £ remains invariant under the given infinitesimal transforma-
tions.

Step 1: Understanding the Problem The Lagrangian given is:

L =i€6" 9,8 + 104" - |F|?

We are given the transformation rules for &, £, F', and F. We need to find the transformation rules for ¢ and
#' such that the action remains invariant.

Step 2: Devising a Plan To ensure the action remains invariant, the variation of the Lagrangian under the given
transformations should be zero. We will use the fact that the action is invariant under the supersymmetry
transformations, which implies that the variation of the Lagrangian should be a total derivative.

Step 3: Carrying Out the Plan We start by considering the variation of the Lagrangian under the given
transformations. The Lagrangian consists of three terms:

L =1i€5"0,6 +0"$0,.p — FF

We need to compute the variation of each term under the given transformations.
Variation of the first term:

O (€0 0u€) = 1(0n8)T" O + 165" 0 (6n€)
Variation of the second term:

0 (0" ¢0u) = 0" (0n$)0udd + 0" $0,u (60 9)
Variation of the third term:

6y (=FF) =~(6,F)F - F(6,F)

Now, we need to ensure that the total variation of the Lagrangian is a total derivative. This will give us the
transformation rules for ¢ and ¢'.
Step 4: Determining 6, ¢ and 67,¢T To ensure the action remains invariant, the transformation rules for ¢ and
#" must be such that the variation of the Lagrangian is a total derivative. From the structure of the given
transformations, we can deduce that:

5n¢ = \/5775

72

S = V/27E
These transformations ensure that the variation of the Lagrangian is a total derivative, thus keeping the
action invariant.
Final Answer: The transformation rules for ¢ and ¢ are:

6n¢ = \/5775
577(1;[= \/5775

Python Implementation:

from typing import Tuple

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuplel
float, float]:

nnn

Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)

nwnn

delta_phi = sqrt(2) * eta * xi
delta_phi_dagger = sqrt(2) * bar_eta * bar_xi
return delta_phi, delta_phi_dagger

This Python function implements the transformation rules for ¢ and o' as derived above. The function takes
the parameters 7, £, 7, and £ and returns the corresponding transformations for ¢ and 43*.
Verification Results:

Auto verification result ([2025-02-18T05:50:03.109916+-00:00’]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o0 (['2025-02-07T22:45:22.242314+00:00’]) Grade: C

Notes: The submitted solution shows a basic understanding of the problem, aiming to find the transformation
rules for ¢ and ¢! such that the action remains invariant. However, there are significant issues: 1) The final
transformation rules d,¢ = V2n¢ and 6,,<Z>T = \/27i¢ are incorrect compared to the standard solution, which
gives 6,¢ = —/2n¢ and (6,6)" = —/2€7. 2) The solution does not show the detailed steps of integrating by
parts or using the identity d"c” + 6"o" = 2¢""” as in the standard solution. 3) The Python implementation
is irrelevant to the mathematical derivation and does not address the core issue of the transformation rules.
Overall, the approach has some merit but lacks crucial steps and leads to an incorrect final answer.

Attempt 3 (2025-02-06T21:57:08.105115+00:00)

Detailed Solution: To solve this problem, we need to determine the transformation rules é,¢ and ((577(Z>)T
such that the action associated with the Lagrangian £ remains invariant under the given infinitesimal trans-
formations.
Step 1: Understanding the Problem
The Lagrangian is given by:

£ =i€5" 0,6 +10¢[" - |FI*
We are given the transformation rules for &, &, F, and F. We need to find 6,¢ and (5n¢)T such that the
action remains invariant.
Step 2: Invariance of the Action
The action S is given by:

S = fd4a:£

For the action to be invariant under the transformation, the variation of the Lagrangian §£ must be a total
derivative:
5L =0,K"

73

We need to compute L and ensure it is a total derivative.
Step 3: Variation of the Lagrangian
Let’s compute the variation of each term in the Lagrangian:
1. Term i£G"0,¢:

6(i€5"9,8) = i(6€)5" D€ +i€5" D (8E)
2. Term |0¢|*:

3(1091%) = 5(0u60" §) = (0u0¢)0" ¢ + 09" 6)

3. Term —|F|*:

8(~|F|*) = -8(FF) = -(8F)F - F(6F)

Step 4: Determine d,¢ and (8,¢)

To ensure the invariance of the action, we need to find ,¢ and (&,qzﬁ)T such that the variation of the Lagrangian
0L is a total derivative.

Given the transformations for &, €, F, and F', we can infer that 0n¢ should be related to £ and 7. A natural
choice is:

oy = \/5715

and its Hermitian conjugate:

(6,9)" = V/20¢
Step 5: Verify the Invariance
Substituting §,¢ = v/2n¢ and (5n¢)T = /27€ into the variation of the Lagrangian, we can verify that 6L is
indeed a total derivative, ensuring the invariance of the action.
Final Answer:
The transformation rules for ¢ and its Hermitian conjugate are:

Snd = V2n€

(6,9)" = V20€
Python Code Implementation:

from typing import Tuple
from math import sqrt

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuplel
float, float]:

nnn

Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)

nwnn

delta_phi = sqrt(2) * eta * xi
delta_phi_dagger = sqrt(2) * bar_eta * bar_xi
return (delta_phi, delta_phi_dagger)

This code defines the function findgqelta,hiwhichcomputestheSUSY trans formationrulesforg and its Her-
mitian conjugate based on the given parameters.
Verification Results:

Auto verification result ([’2025-02-18T05:50:03.110294+-00:00]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o0 (['2025-02-07T22:45:31.208299+00:00’]) Grade: C

Notes: The submitted solution shows a basic understanding of the problem and the need to find transformation
rules for 6,¢ and its Hermitian conjugate. However, it contains significant issues. The final transformation
rules ,¢ = V2n¢ and (5n¢)T = /27 are incorrect, as they do not match the standard solution’s &, ¢ = —/2n&
and ((5n¢)T = —\/5577. The submitted solution also lacks detailed steps to derive these transformations, such as
integrating by parts and using the identity 6" o" +5"o" = 2¢g"”. The Python code implementation is irrelevant
to the mathematical derivation and does not contribute to solving the problem.

74

Attempt 4 (2025-02-06T21:58:12.344387+00:00)

Detailed Solution: To solve this problem, we need to determine the transformation rules 8,¢ and (6,¢)"
such that the action associated with the Lagrangian £ remains invariant under the given infinitesimal trans-
formations.

Step 1: Understand the Problem We are given a Lagrangian involving a Weyl spinor £ and complex scalar
fields ¢ and F. The transformations for &, &, F', and F are provided. We need to find the transformations for
¢ and ¢' to ensure the action remains invariant.

Step 2: Devise a Plan To find §,¢ and (6n¢)T, we will use the fact that the action should be invariant under
the given transformations. This implies that the variation of the Lagrangian should be zero up to a total
derivative.

Step 3: Carry Out the Plan Let’s consider the variation of the Lagrangian under the given transformations:

onL = by (ig‘}#auf) + 0 (|3¢|2) —0n (|F‘2)
We need to compute each term separately.
Variation of i£6*0,.¢&:

8y (165" 0u€) =i (81€) 5" € +i€5" Dy (8,8)
Variation of |9¢|*:

8 (1001 = 8 (000" 8) = By (09) 06 + D60 (6n6)
Variation of |F|*:
oy (IF?) = 6, (FF) = (8,F) F + F (5,F)

Now, we need to ensure that the total variation J,L is zero up to a total derivative. This will give us the
conditions on &,¢ and (6,6)".
After some algebraic manipulations and ensuring that the terms cancel out appropriately, we find:

Snd = V20"
(5n¢)T = \/iﬁdgd

Final Answer: The transformation rules for ¢ and ¢ are:

8o = V20 Ea
((sn‘75)T = \/iﬁdgd
Python Implementation:

from typing import Tuple
from math import sqrt

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuplel
float, float]:

nwnn

Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)

nwnn

delta_phi = sqrt(2) * eta * xi
delta_phi_dagger = sqrt(2) * bar_eta * bar_xi
return (delta_phi, delta_phi_dagger)

This Python function findqeltayhicomputestheSUSY trans formationrulesforg and ¢ based on the given

parameters n, £, 7, and &.
Verification Results:

Auto verification result ([2025-02-18T05:50:03.110663+-00:00’]) Status: Incorrect

Evaluations:

75

Evaluated by gpt-4o0 (['2025-02-07T22:45:39.453586+00:00’]) Grade: C

Notes: The submitted solution shows a basic understanding of the problem, aiming to find the transformation
rules for ¢ and qﬁf such that the Lagrangian £ remains invariant. However, there are significant issues: the final
transformation rules d,¢ = /2%, and (5n¢>)T = V/274€% are incorrect compared to the standard solution,
which gives d,¢ = —v/2n¢ and (én(zb)T = —\/2€7. The approach lacks the necessary algebraic manipulations and
integration by parts used in the standard solution to achieve the correct result. The Python implementation
is irrelevant to the mathematical solution and does not address the core issue of the transformation rules.

Attempt 5 (2025-02-06T21:59:28.792628+00:00)

Detailed Solution: To solve this problem, we need to determine the transformation rules é,¢ and (§n¢>)T
such that the action associated with the Lagrangian £ remains invariant under the given infinitesimal trans-
formations.
Step 1: Understanding the Problem
We are given the Lagrangian:

L =if" 0,6 +|0¢|" ~ |F|”
and the transformation rules for &, £, F, and F. We need to find the transformation rules for ¢ and ¢' to
ensure the action remains invariant.
Step 2: Analyzing the Transformation Rules
The given transformation rules are:

énfa = ’L.\/Qﬂ'gd’f_ldau(ﬁ + \/§7IO<F
8n€s = -i\/in“agﬁaué +V20;F
6, F = iv/27j6" 0,€
o F = —Z\/_(? &'n
Step 3: Determining 6,6 and (8,¢)"

To ensure the action remains invariant, the transformation of ¢ must be such that the variation of the
Lagrangian £ under the transformation is zero. The variation of the Lagrangian is given by:

oL _
S, L ,75 —5 Ft ozl

-
Given the structure of the Lagrangian, the transformation rules for ¢ and ¢’ must be such that they cancel
the variations arising from the other fields. The standard SUSY transformation rules for ¢ and ¢' are:

dnd = \/577&504

oy ¢T = \/577& E “
Step 4: Verifying the Transformation Rules
Let’s verify that these transformation rules leave the Lagrangian invariant. The variation of the Lagrangian
under these transformations should be zero, which can be checked by substituting the transformation rules
into the variation of the Lagrangian.
Step 5: Final Answer
The transformation rules for ¢ and ¢! are:

Snp = V20 €a
5n¢T = \/éﬁdga
Python Implementation

from typing import Tuple

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuplel
float, float]:

nwnn

Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)

76

nwnn

delta_phi = sqrt(2) * eta * xi
delta_phi_dagger = sqrt(2) * bar_eta * bar_xi
return delta_phi, delta_phi_dagger

Verification Results:
Auto verification result ([2025-02-18T05:50:03.111045+-00:00]) Status: Incorrect
Evaluations:

Evaluated by gpt-4o0 (['2025-02-07T22:45:47.752248+00:00’]) Grade: C

Notes: The submitted solution shows a basic understanding of the problem and attempts to derive the
transformation rules for &,¢ and (6,4)". However, it contains significant issues. The final transformation rules
0o = /2% and 6,07 = /274£% are incorrect compared to the standard solution, which gives 8,¢ = —/2n¢
and (5n¢)f = —\/55_77. The submitted solution does not correctly address the integration by parts and the
cancellation of terms necessary to derive the correct transformation rules. Additionally, the solution lacks
detailed steps to verify the invariance of the Lagrangian under the transformations.

7

2.2.10 Model: deepseek-ai/DeepSeek-R1
Attempt 1 (2025-02-08T09:24:35.057122+00:00)

Detailed Solution:

from math import sqrt
from typing import Tuple

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuplel
float, float]:

nnn

Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)

nwnn

delta_phi = sqrt(2) * eta * xi
delta_phi_dagger = sqrt(2) * bar_xi * bar_eta
return (delta_phi, delta_phi_dagger)

Verification Results:
Auto verification result ([2025-02-18T05:50:03.111506+-00:00’]) Status: Incorrect
Evaluations:

Evaluated by gpt-4o0 (['2025-02-08T21:41:00.965114+00:00’]) Grade: C

Notes: The submitted solution shows a basic understanding of the problem and attempts to derive the
transformation rules for d,,¢ and its conjugate. However, the solution is overly verbose and lacks clarity in the
derivation process. It does not clearly demonstrate how the terms in the variation of the Lagrangian combine
to form a total derivative, which is crucial for ensuring invariance under the transformations. The final answer
On = V2n¢ and (57,¢>)T = /27 is correct, but the reasoning leading to it is not well-structured. The Python
code provided correctly implements the transformation rules, assuming the parameters are treated as scalars,
which is a simplification.

Attempt 2 (2025-02-08T09:28:10.353854+00:00)

Detailed Solution:

from math import sqrt
from typing import Tuple

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuplel
float, float]:

nwnn

Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)

nwnn

delta_phi = sqrt(2) * eta * xi
delta_phi_dagger = sqrt(2) * bar_eta * bar_xi
return (delta_phi, delta_phi_dagger)

Verification Results:

Auto verification result ([’2025-02-18T05:50:03.1119544-00:00]) Status: Incorrect
Evaluations:

Evaluated by gpt-4o0 (['2025-02-08T21:41:11.852950+00:00’]) Grade: C

Notes: The submitted solution shows a basic understanding of the problem and attempts to derive the
transformation rules for d,¢ and its conjugate. However, there are significant issues with the approach.

78

The solution lacks clarity in handling the indices and the manipulation of the o matrices. The explanation
is overly verbose and does not clearly lead to the correct transformation rules. The final Python code
does not accurately reflect the spinor nature of the variables, treating them as scalars instead. The correct
transformations should be d8,¢ = —/2n¢ and (6,¢)" = —/2€7, which are not correctly derived or implemented
in the code.

Attempt 3 (2025-02-08T09:31:38.670265+00:00)

Detailed Solution:

To determine the transformation rules d,¢ and (5,4)" that leave the action invariant, we analyze the variation
of the Lagrangian under the given transformations. The key steps involve ensuring the variation of the
Lagrangian is a total derivative. By matching terms from the variations of the fermionic and auxiliary fields,
we find the required transformations for the scalar field ¢.

The transformation rules are derived to cancel non-total derivative terms, leading to:

oy = \/iﬁaém (6n¢)T = \/Egdﬁa
These transformations ensure the Lagrangian’s invariance under the specified supersymmetry transformations.

from typing import Tuple
from math import sqrt

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuplel
float, float]:

nwnn

Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)

delta_phi = sqrt(2) * eta * xi
delta_phi_dagger = sqrt(2) * bar_xi * bar_eta
return (delta_phi, delta_phi_dagger)

Verification Results:

Auto verification result ([’2025-02-18T05:50:03.1124144-00:00]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o0 (['2025-02-08T21:41:21.842704+00:00’]) Grade: C

Notes: The submitted solution shows an understanding of the problem and attempts to derive the transfor-
mation rules for §,¢ and (6,,gz5)f. However, it contains significant issues. The solution does not correctly derive
the transformation rules d,¢ = —/2n¢ and (3,¢)" = —/2€7 as given in the standard solution. The approach
is lengthy and convoluted, with incorrect assumptions and manipulations of terms. The solution does not
effectively use the identities and properties of the o matrices to simplify and match terms correctly. The final
answer provided in the solution does not match the standard solution, indicating a misunderstanding of the
problem requirements.

Attempt 4 (2025-02-08T09:35:36.035086+00:00)

Detailed Solution:

To determine the transformation rules d,¢ and (8,4)" that leave the action invariant, we analyze the variation
of the Lagrangian under the given supersymmetry transformations. The key steps involve ensuring that the
variation of the Lagrangian is a total derivative.

The transformation for ¢ must be such that the variations of the fermionic and scalar kinetic terms combine
into total derivatives. By examining the structure of the supersymmetry transformations and requiring
cancellation of non-total derivative terms, we find:

79

Oy =V20"6a, (019)" = V20sE"
These transformations ensure the invariance of the action by balancing terms in the Lagrangian variation.

from math import sqrt
from typing import Tuple

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuplel
float, float]:

nwnn

Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)

delta_phi = sqrt(2) * eta * xi
delta_phi_dagger = sqrt(2) * bar_eta * bar_xi
return (delta_phi, delta_phi_dagger)

Verification Results:
Auto verification result ([2025-02-18T05:50:03.112854+-00:00’]) Status: Incorrect
Evaluations:

Evaluated by gpt-4o0 (['2025-02-08T21:41:31.054530+00:00’]) Grade: C

Notes: The submitted solution shows a basic understanding of the problem and attempts to derive the
transformation rules for d,¢ and (6,,¢)T. However, it contains significant issues, such as incorrect application
of the sigma matrix identities and a lack of clarity in handling the index contractions. The solution does
not correctly derive the transformation rules d,¢ = —v/2n€ and (8,¢)" = —\/2€7 as given in the standard
solution. The Python code provided is overly simplified and does not accurately reflect the spinor nature of
the variables involved. The approach has some merit, but the execution is flawed.

Attempt 5 (2025-02-08T09:39:12.444796+00:00)

Detailed Solution:

from math import sqrt
from typing import Tuple

def find_delta_phi(eta: float, xi: float, bar_eta: float, bar_xi: float) -> Tuplel
float, float]:

nwnn

Returns the SUSY transformation rules for phi and its Hermitian conjugate:
a tuple (delta_phi, delta_phi_dagger)

nwnn

delta_phi = sqrt(2) * eta * xi
delta_phi_dagger = sqrt(2) * bar_eta * bar_xi
return (delta_phi, delta_phi_dagger)

Verification Results:
Auto verification result ([’2025-02-18T05:50:03.113314+-00:00]) Status: Incorrect

Evaluations:

Evaluated by gpt-4o0 ([’2025-02-08T21:41:48.500020+-00:00’]) Grade: A

Notes: The submitted solution correctly identifies the transformation rules for the scalar field §,¢ = V2n¢
and its conjugate 5W¢T = +/2£7, which match the standard solution. The solution process involves a detailed
step-by-step analysis of the variation of the Lagrangian, ensuring that the total variation is a total derivative,
consistent with the requirements for supersymmetry invariance. The Python code provided implements
these transformation rules correctly, assuming the parameters are treated as complex numbers (or floats for

80

simplicity) representing the contracted spinor components. The approach and final results are physically
equivalent to the standard solution, demonstrating a correct understanding of the mathematical concepts
involved.

81

	Grade Distribution Analysis
	Auto-Verification Results
	Overall Grade Distribution
	Grade Distribution by Solution Model
	Grade-Verification Correlation Analysis

	Problem SUSY-Symmetry, Difficulty level: 4
	Expert Solution
	Model Solutions
	Model: meta-llama/Meta-Llama-3.1-70B-Instruct
	Model: Qwen/Qwen2.5-72B-Instruct
	Model: meta-llama/Meta-Llama-3.1-8B-Instruct
	Model: Qwen/Qwen2.5-7B-Instruct
	Model: Qwen/QwQ-32B-Preview
	Model: o3-mini
	Model: o1
	Model: chatgpt-4o-latest
	Model: deepseek-ai/DeepSeek-V3
	Model: deepseek-ai/DeepSeek-R1

